亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To check the accuracy of Bayesian computations, it is common to use rank-based simulation-based calibration (SBC). However, SBC has drawbacks: The test statistic is somewhat ad-hoc, interactions are difficult to examine, multiple testing is a challenge, and the resulting p-value is not a divergence metric. We propose to replace the marginal rank test with a flexible classification approach that learns test statistics from data. This measure typically has a higher statistical power than the SBC rank test and returns an interpretable divergence measure of miscalibration, computed from classification accuracy. This approach can be used with different data generating processes to address likelihood-free inference or traditional inference methods like Markov chain Monte Carlo or variational inference. We illustrate an automated implementation using neural networks and statistically-inspired features, and validate the method with numerical and real data experiments.

相關內容

This paper launches a thorough discussion on the locality of local neural operator (LNO), which is the core that enables LNO great flexibility on varied computational domains in solving transient partial differential equations (PDEs). We investigate the locality of LNO by looking into its receptive field and receptive range, carrying a main concern about how the locality acts in LNO training and applications. In a large group of LNO training experiments for learning fluid dynamics, it is found that an initial receptive range compatible with the learning task is crucial for LNO to perform well. On the one hand, an over-small receptive range is fatal and usually leads LNO to numerical oscillation; on the other hand, an over-large receptive range hinders LNO from achieving the best accuracy. We deem rules found in this paper general when applying LNO to learn and solve transient PDEs in diverse fields. Practical examples of applying the pre-trained LNOs in flow prediction are presented to confirm the findings further. Overall, with the architecture properly designed with a compatible receptive range, the pre-trained LNO shows commendable accuracy and efficiency in solving practical cases.

In a recently developed variational discretization scheme for second order initial value problems ( J. Comput. Phys. 498, 112652 (2024) ), it was shown that the Noether charge associated with time translation symmetry is exactly preserved in the interior of the simulated domain. The obtained solution also fulfils the naively discretized equations of motions inside the domain, except for the last two grid points. Here we provide an explanation for the deviations at the boundary as stemming from the Lagrange multipliers used to implement initial and connection conditions. We show explicitly that the Noether charge including the boundary corrections is exactly preserved at its continuum value over the whole simulation domain, including the boundary points.

The log-rank conjecture, a longstanding problem in communication complexity, has persistently eluded resolution for decades. Consequently, some recent efforts have focused on potential approaches for establishing the conjecture in the special case of XOR functions, where the communication matrix is lifted from a boolean function, and the rank of the matrix equals the Fourier sparsity of the function, which is the number of its nonzero Fourier coefficients. In this note, we refute two conjectures. The first has origins in Montanaro and Osborne (arXiv'09) and is considered in Tsang et al. (FOCS'13), and the second one is due to Mande and Sanyal (FSTTCS'20). These conjectures were proposed in order to improve the best-known bound of Lovett (STOC'14) regarding the log-rank conjecture in the special case of XOR functions. Both conjectures speculate that the set of nonzero Fourier coefficients of the boolean function has some strong additive structure. We refute these conjectures by constructing two specific boolean functions tailored to each.

Compressed Sensing (CS) encompasses a broad array of theoretical and applied techniques for recovering signals, given partial knowledge of their coefficients. Its applications span various fields, including mathematics, physics, engineering, and several medical sciences. Motivated by our interest in the mathematics behind Magnetic Resonance Imaging (MRI) and CS, we employ convex analysis techniques to analytically determine equivalents of Lagrange multipliers for optimization problems with inequality constraints, specifically a weighted LASSO with voxel-wise weighting. We investigate this problem under assumptions on the fidelity term $\Vert{Ax-b}\Vert_2^2$, either concerning the sign of its gradient or orthogonality-like conditions of its matrix. To be more precise, we either require the sign of each coordinate of $2(Ax-b)^TA$ to be fixed within a rectangular neighborhood of the origin, with the side lengths of the rectangle dependent on the constraints, or we assume $A^TA$ to be diagonal. The objective of this work is to explore the relationship between Lagrange multipliers and the constraints of a weighted variant of LASSO, specifically in the mentioned cases where this relationship can be computed explicitly. As they scale the regularization terms of the weighted LASSO, Lagrange multipliers serve as tuning parameters for the weighted LASSO, prompting the question of their potential effective use as tuning parameters in applications like MR image reconstruction and denoising. This work represents an initial step in this direction.

Intrusion Detection Systems (IDS) are widely employed to detect and mitigate external network security events. VANETs (Vehicle ad-hoc Networks) are evolving, especially with the development of Connected Autonomous Vehicles (CAVs). So, it is crucial to assess how traditional IDS approaches can be utilised for emerging technologies. To address this concern, our work presents a stacked ensemble learning approach for IDS, which combines multiple machine learning algorithms to detect threats more effectively than single algorithm methods. Using the CICIDS2017 and the VeReMi benchmark data sets, we compare the performance of our approach with existing machine learning methods and find that it is more accurate at identifying threats. Our method also incorporates hyperparameter optimization and feature selection to improve its performance further. Overall, our results suggest that stacked ensemble learning is a promising technique for enhancing the effectiveness of IDS.

Modeling excess remains to be an important topic in insurance data modeling. Among the alternatives of modeling excess, the Peaks Over Threshold (POT) framework with Generalized Pareto distribution (GPD) is regarded as an efficient approach due to its flexibility. However, the selection of an appropriate threshold for such framework is a major difficulty. To address such difficulty, we applied several accumulation tests along with Anderson-Darling test to determine an optimal threshold. Based on the selected thresholds, the fitted GPD with the estimated quantiles can be found. We applied the procedure to the well-known Norwegian Fire Insurance data and constructed the confidence intervals for the Value-at-Risks (VaR). The accumulation test approach provides satisfactory performance in modeling the high quantiles of Norwegian Fire Insurance data compared to the previous graphical methods.

Maps are fundamental medium to visualize and represent the real word in a simple and 16 philosophical way. The emergence of the 3rd wave information has made a proportion of maps are available to be generated ubiquitously, which would significantly enrich the dimensions and perspectives to understand the characteristics of the real world. However, a majority of map dataset have never been discovered, acquired and effectively used, and the map data used in many applications might not be completely fitted for the authentic demands of these applications. This challenge is emerged due to the lack of numerous well-labelled benchmark datasets for implementing the deep learning approaches into identifying complicated map content. Thus, we develop a large-scale benchmark dataset that includes well-labelled dataset for map text annotation recognition, map scene classification, map super-resolution reconstruction, and map style transferring. Furthermore, these well-labelled datasets would facilitate the state-of-the-art machine intelligence technologies to conduct map feature detection, map pattern recognition and map content retrieval. We hope our efforts would be useful for AI-enhanced cartographical applications.

For several decades the dominant techniques for integer linear programming have been branching and cutting planes. Recently, several authors have developed core point methods for solving symmetric integer linear programs (ILPs). An integer point is called a core point if its orbit polytope is lattice-free. It has been shown that for symmetric ILPs, optimizing over the set of core points gives the same answer as considering the entire space. Existing core point techniques rely on the number of core points (or equivalence classes) being finite, which requires special symmetry groups. In this paper we develop some new methods for solving symmetric ILPs (based on outer approximations of core points) that do not depend on finiteness but are more efficient if the group has large disjoint cycles in its set of generators.

Forecast combination involves using multiple forecasts to create a single, more accurate prediction. Recently, feature-based forecasting has been employed to either select the most appropriate forecasting models or to optimize the weights of their combination. In this paper, we present a multi-task optimization paradigm that focuses on solving both problems simultaneously and enriches current operational research approaches to forecasting. In essence, it incorporates an additional learning and optimization task into the standard feature-based forecasting approach, focusing on the identification of an optimal set of forecasting methods. During the training phase, an optimization model with linear constraints and quadratic objective function is employed to identify accurate and diverse methods for each time series. Moreover, within the training phase, a neural network is used to learn the behavior of that optimization model. Once training is completed the candidate set of methods is identified using the network. The proposed approach elicits the essential role of diversity in feature-based forecasting and highlights the interplay between model combination and model selection when optimizing forecasting ensembles. Experimental results on a large set of series from the M4 competition dataset show that our proposal enhances point forecast accuracy compared to state-of-the-art methods.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司