亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Hands-on computing education requires a realistic learning environment that enables students to gain and deepen their skills. Available learning environments, including virtual and physical labs, provide students with real-world computer systems but rarely adapt the learning environment to individual students of various proficiency and background. We designed a unique and novel smart environment for adaptive training of cybersecurity skills. The environment collects a variety of student data to assign a suitable learning path through the training. To enable such adaptiveness, we proposed, developed, and deployed a new tutor model and a training format. We evaluated the learning environment using two different adaptive trainings attended by 114 students of various proficiency. The results show students were assigned tasks with a more appropriate difficulty, which enabled them to successfully complete the training. Students reported that they enjoyed the training, felt the training difficulty was appropriately designed, and would attend more training sessions like these. Instructors can use the environment for teaching any topic involving real-world computer networks and systems because it is not tailored to particular training. We freely released the software along with exemplary training so that other instructors can adopt the innovations in their teaching practice.

相關內容

We consider the problem of optimal unsignalized intersection management for continual streams of randomly arriving robots. This problem involves repeatedly solving different instances of a mixed integer program, for which the computation time using a naive optimization algorithm scales exponentially with the number of robots and lanes. Hence, such an approach is not suitable for real-time implementation. In this paper, we propose a solution framework that combines learning and sequential optimization. In particular, we propose an algorithm for learning a shared policy that given the traffic state information, determines the crossing order of the robots. Then, we optimize the trajectories of the robots sequentially according to that crossing order. This approach inherently guarantees safety at all times. We validate the performance of this approach using extensive simulations. Our approach, on average, significantly outperforms the heuristics from the literature. We also show through simulations that the computation time for our approach scales linearly with the number of robots. We further implement the learnt policies on physical robots with a few modifications to the solution framework to address real-world challenges and establish its real-time implementability.

Rule learning approaches for knowledge graph completion are efficient, interpretable and competitive to purely neural models. The rule aggregation problem is concerned with finding one plausibility score for a candidate fact which was simultaneously predicted by multiple rules. Although the problem is ubiquitous, as data-driven rule learning can result in noisy and large rulesets, it is underrepresented in the literature and its theoretical foundations have not been studied before in this context. In this work, we demonstrate that existing aggregation approaches can be expressed as marginal inference operations over the predicting rules. In particular, we show that the common Max-aggregation strategy, which scores candidates based on the rule with the highest confidence, has a probabilistic interpretation. Finally, we propose an efficient and overlooked baseline which combines the previous strategies and is competitive to computationally more expensive approaches.

In reinforcement learning (RL), key components of many algorithms are the exploration strategy and replay buffer. These strategies regulate what environment data is collected and trained on and have been extensively studied in the RL literature. In this paper, we investigate the impact of these components in the context of generalisation in multi-task RL. We investigate the hypothesis that collecting and training on more diverse data from the training environments will improve zero-shot generalisation to new tasks. We motivate mathematically and show empirically that generalisation to tasks that are "reachable'' during training is improved by increasing the diversity of transitions in the replay buffer. Furthermore, we show empirically that this same strategy also shows improvement for generalisation to similar but "unreachable'' tasks which could be due to improved generalisation of the learned latent representations.

This paper presents efficient algorithms, designed to leverage SIMD for performing Montgomery reductions and additions on integers larger than 512 bits. The existing algorithms encounter inefficiencies when parallelized using SIMD due to extensive dependencies in both operations, particularly noticeable in costly operations like ARM's SVE. To mitigate this problem, a novel addition algorithm is introduced that simulates the addition of large integers using a smaller addition, quickly producing the same set of carries. These carries are then utilized to perform parallel additions on large integers. For Montgomery reductions, serial multiplications are replaced with precomputations that can be effectively calculated using SIMD extensions. Experimental evidence demonstrates that these proposed algorithms substantially enhance the performance of state-of-the-art implementations of several post-quantum cryptography algorithms. Notably, they deliver a 30% speed-up from the latest CTIDH implementation, an 11% speed-up from the latest CSIDH implementation in AVX-512 processors, and a 7% speed-up from Microsoft's standard PQCrypto-SIDH for SIKEp503 on A64FX.

Quality-sensitive applications of machine learning (ML) require quality assurance (QA) by humans before the predictions of an ML model can be deployed. QA for ML (QA4ML) interfaces require users to view a large amount of data and perform many interactions to correct errors made by the ML model. An optimized user interface (UI) can significantly reduce interaction costs. While UI optimization can be informed by user studies evaluating design options, this approach is not scalable because there are typically numerous small variations that can affect the efficiency of a QA4ML interface. Hence, we propose using simulation to evaluate and aid the optimization of QA4ML interfaces. In particular, we focus on simulating the combined effects of human intelligence in initiating appropriate interaction commands and machine intelligence in providing algorithmic assistance for accelerating QA4ML processes. As QA4ML is usually labor-intensive, we use the simulated task completion time as the metric for UI optimization under different interface and algorithm setups. We demonstrate the usage of this UI design method in several QA4ML applications.

We introduce a method to convert Physics-Informed Neural Networks (PINNs), commonly used in scientific machine learning, to Spiking Neural Networks (SNNs), which are expected to have higher energy efficiency compared to traditional Artificial Neural Networks (ANNs). We first extend the calibration technique of SNNs to arbitrary activation functions beyond ReLU, making it more versatile, and we prove a theorem that ensures the effectiveness of the calibration. We successfully convert PINNs to SNNs, enabling computational efficiency for diverse regression tasks in solving multiple differential equations, including the unsteady Navier-Stokes equations. We demonstrate great gains in terms of overall efficiency, including Separable PINNs (SPINNs), which accelerate the training process. Overall, this is the first work of this kind and the proposed method achieves relatively good accuracy with low spike rates.

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

In the past decade, we have witnessed the rise of deep learning to dominate the field of artificial intelligence. Advances in artificial neural networks alongside corresponding advances in hardware accelerators with large memory capacity, together with the availability of large datasets enabled researchers and practitioners alike to train and deploy sophisticated neural network models that achieve state-of-the-art performance on tasks across several fields spanning computer vision, natural language processing, and reinforcement learning. However, as these neural networks become bigger, more complex, and more widely used, fundamental problems with current deep learning models become more apparent. State-of-the-art deep learning models are known to suffer from issues that range from poor robustness, inability to adapt to novel task settings, to requiring rigid and inflexible configuration assumptions. Ideas from collective intelligence, in particular concepts from complex systems such as self-organization, emergent behavior, swarm optimization, and cellular systems tend to produce solutions that are robust, adaptable, and have less rigid assumptions about the environment configuration. It is therefore natural to see these ideas incorporated into newer deep learning methods. In this review, we will provide a historical context of neural network research's involvement with complex systems, and highlight several active areas in modern deep learning research that incorporate the principles of collective intelligence to advance its current capabilities. To facilitate a bi-directional flow of ideas, we also discuss work that utilize modern deep learning models to help advance complex systems research. We hope this review can serve as a bridge between complex systems and deep learning communities to facilitate the cross pollination of ideas and foster new collaborations across disciplines.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

北京阿比特科技有限公司