亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A network $N$ on a finite set $X$, $|X|\geq 2$, is a connected directed acyclic graph with leaf set $X$ in which every root in $N$ has outdegree at least 2 and no vertex in $N$ has indegree and outdegree equal to 1; $N$ is arboreal if the underlying unrooted, undirected graph of $N$ is a tree. Networks are of interest in evolutionary biology since they are used, for example, to represent the evolutionary history of a set $X$ of species whose ancestors have exchanged genes in the past. For $M$ some arbitrary set of symbols, $d:{X \choose 2} \to M \cup \{\odot\}$ is a symbolic arboreal map if there exists some arboreal network $N$ whose vertices with outdegree two or more are labelled by elements in $M$ and so that $d(\{x,y\})$, $\{x,y\} \in {X \choose 2}$, is equal to the label of the least common ancestor of $x$ and $y$ in $N$ if this exists and $\odot$ else. Important examples of symbolic arboreal maps include the symbolic ultrametrics, which arise in areas such as game theory, phylogenetics and cograph theory. In this paper we show that a map $d:{X \choose 2} \to M \cup \{\odot\}$ is a symbolic arboreal map if and only if $d$ satisfies certain 3- and 4-point conditions and the graph with vertex set $X$ and edge set consisting of those pairs $\{x,y\} \in {X \choose 2}$ with $d(\{x,y\}) \neq \odot$ is Ptolemaic. To do this, we introduce and prove a key theorem concerning the shared ancestry graph for a network $N$ on $X$, where this is the graph with vertex set $X$ and edge set consisting of those $\{x,y\} \in {X \choose 2}$ such that $x$ and $y$ share a common ancestor in $N$. In particular, we show that for any connected graph $G$ with vertex set $X$ and edge clique cover $K$ in which there are no two distinct sets in $K$ with one a subset of the other, there is some network with $|K|$ roots and leaf set $X$ whose shared ancestry graph is $G$.

相關內容

We show that the problem of counting the number of $n$-variable unate functions reduces to the problem of counting the number of $n$-variable monotone functions. Using recently obtained results on $n$-variable monotone functions, we obtain counts of $n$-variable unate functions up to $n=9$. We use an enumeration strategy to obtain the number of $n$-variable balanced monotone functions up to $n=7$. We show that the problem of counting the number of $n$-variable balanced unate functions reduces to the problem of counting the number of $n$-variable balanced monotone functions, and consequently, we obtain the number of $n$-variable balanced unate functions up to $n=7$. Using enumeration, we obtain the numbers of equivalence classes of $n$-variable balanced monotone functions, unate functions and balanced unate functions up to $n=6$. Further, for each of the considered sub-class of $n$-variable monotone and unate functions, we also obtain the corresponding numbers of $n$-variable non-degenerate functions.

Collaborative filtering (CF) has become a popular method for developing recommender systems (RSs) where ratings of a user for new items are predicted based on her past preferences and available preference information of other users. Despite the popularity of CF-based methods, their performance is often greatly limited by the sparsity of observed entries. In this study, we explore the data augmentation and refinement aspects of Maximum Margin Matrix Factorization (MMMF), a widely accepted CF technique for rating predictions, which has not been investigated before. We exploit the inherent characteristics of CF algorithms to assess the confidence level of individual ratings and propose a semi-supervised approach for rating augmentation based on self-training. We hypothesize that any CF algorithm's predictions with low confidence are due to some deficiency in the training data and hence, the performance of the algorithm can be improved by adopting a systematic data augmentation strategy. We iteratively use some of the ratings predicted with high confidence to augment the training data and remove low-confidence entries through a refinement process. By repeating this process, the system learns to improve prediction accuracy. Our method is experimentally evaluated on several state-of-the-art CF algorithms and leads to informative rating augmentation, improving the performance of the baseline approaches.

The dichromatic number of a digraph is the minimum integer $k$ such that it admits a $k$-dicolouring, i.e. a partition of its vertices into $k$ acyclic subdigraphs. We say that a digraph $D$ is a super-orientation of an undirected graph $G$ if $G$ is the underlying graph of $D$. If $D$ does not contain any pair of symmetric arcs, we just say that $D$ is an orientation of $G$. In this work, we give both lower and upper bounds on the dichromatic number of super-orientations of chordal graphs. We also show a family of orientations of cographs for which the dichromatic number is equal to the clique number of the underlying graph.

The key result of this paper is to find all the joint distributions of random vectors whose sums $S=X_1+\ldots+X_d$ are minimal in convex order in the class of symmetric Bernoulli distributions. The minimal convex sums distributions are known to be strongly negatively dependent. Beyond their interest per se, these results enable us to explore negative dependence within the class of copulas. In fact, there are two classes of copulas that can be built from multivariate symmetric Bernoulli distributions: the extremal mixture copulas, and the FGM copulas. We study the extremal negative dependence structure of the copulas corresponding to symmetric Bernoulli vectors with minimal convex sums and we explicitly find a class of minimal dependence copulas. Our main results stem from the geometric and algebraic representations of multivariate symmetric Bernoulli distributions, which effectively encode several of their statistical properties.

We consider the problem of counting 4-cycles ($C_4$) in an undirected graph $G$ of $n$ vertices and $m$ edges (in bipartite graphs, 4-cycles are also often referred to as $\textit{butterflies}$). There have been a number of previous algorithms for this problem based on sorting the graph by degree and using randomized hash tables. These are appealing in theory due to compact storage and fast access on average. But, the performance of hash tables can degrade unpredictably and are also vulnerable to adversarial input. We develop a new simpler algorithm for counting $C_4$ requiring $O(m\bar\delta(G))$ time and $O(n)$ space, where $\bar \delta(G) \leq O(\sqrt{m})$ is the $\textit{average degeneracy}$ parameter introduced by Burkhardt, Faber \& Harris (2020). It has several practical improvements over previous algorithms; for example, it is fully deterministic, does not require any sorting of the input graph, and uses only addition and array access in its inner loops. To the best of our knowledge, all previous efficient algorithms for $C_4$ counting have required $\Omega(m)$ space in addition to storing the input graph. Our algorithm is very simple and easily adapted to count 4-cycles incident to each vertex and edge. Empirical tests demonstrate that our array-based approach is $4\times$ -- $7\times$ faster on average compared to popular hash table implementations.

The grounded Laplacian matrix $\LL_{-S}$ of a graph $\calG=(V,E)$ with $n=|V|$ nodes and $m=|E|$ edges is a $(n-s)\times (n-s)$ submatrix of its Laplacian matrix $\LL$, obtained from $\LL$ by deleting rows and columns corresponding to $s=|S| \ll n $ ground nodes forming set $S\subset V$. The smallest eigenvalue of $\LL_{-S}$ plays an important role in various practical scenarios, such as characterizing the convergence rate of leader-follower opinion dynamics, with a larger eigenvalue indicating faster convergence of opinion. In this paper, we study the problem of adding $k \ll n$ edges among all the nonexistent edges forming the candidate edge set $Q = (V\times V)\backslash E$, in order to maximize the smallest eigenvalue of the grounded Laplacian matrix. We show that the objective function of the combinatorial optimization problem is monotone but non-submodular. To solve the problem, we first simplify the problem by restricting the candidate edge set $Q$ to be $(S\times (V\backslash S))\backslash E$, and prove that it has the same optimal solution as the original problem, although the size of set $Q$ is reduced from $O(n^2)$ to $O(n)$. Then, we propose two greedy approximation algorithms. One is a simple greedy algorithm with an approximation ratio $(1-e^{-\alpha\gamma})/\alpha$ and time complexity $O(kn^4)$, where $\gamma$ and $\alpha$ are, respectively, submodularity ratio and curvature, whose bounds are provided for some particular cases. The other is a fast greedy algorithm without approximation guarantee, which has a running time $\tilde{O}(km)$, where $\tilde{O}(\cdot)$ suppresses the ${\rm poly} (\log n)$ factors. Numerous experiments on various real networks are performed to validate the superiority of our algorithms, in terms of effectiveness and efficiency.

We consider the two-pronged fork frame $F$ and the variety $\mathbf{Eq}(B_F)$ generated by its dual closure algebra $B_F$. We describe the finite projective algebras in $\mathbf{Eq}(B_F)$ and give a purely semantic proof that unification in $\mathbf{Eq}(B_F)$ is finitary and not unitary.

Given a hypergraph $\mathcal{H}$, the dual hypergraph of $\mathcal{H}$ is the hypergraph of all minimal transversals of $\mathcal{H}$. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, etc. In this paper we study conformality of dual hypergraphs. While we do not settle the computational complexity status of recognizing this property, we show that the problem is in co-NP and can be solved in polynomial time for hypergraphs of bounded dimension. In the special case of dimension $3$, we reduce the problem to $2$-Satisfiability. Our approach has an implication in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most $k$, for any fixed $k$.

The complexity class Quantum Statistical Zero-Knowledge ($\mathsf{QSZK}$) captures computational difficulties of the time-bounded quantum state testing problem with respect to the trace distance, known as the Quantum State Distinguishability Problem (QSDP) introduced by Watrous (FOCS 2002). However, QSDP is in $\mathsf{QSZK}$ merely within the constant polarizing regime, similar to its classical counterpart shown by Sahai and Vadhan (JACM 2003) due to the polarization lemma (error reduction for SDP). Recently, Berman, Degwekar, Rothblum, and Vasudevan (TCC 2019) extended the $\mathsf{SZK}$ containment for SDP beyond the polarizing regime via the time-bounded distribution testing problems with respect to the triangular discrimination and the Jensen-Shannon divergence. Our work introduces proper quantum analogs for these problems by defining quantum counterparts for triangular discrimination. We investigate whether the quantum analogs behave similarly to their classical counterparts and examine the limitations of existing approaches to polarization regarding quantum distances. These new $\mathsf{QSZK}$-complete problems improve $\mathsf{QSZK}$ containments for QSDP beyond the polarizing regime and establish a simple $\mathsf{QSZK}$-hardness for the quantum entropy difference problem (QEDP) defined by Ben-Aroya, Schwartz, and Ta-Shma (ToC 2010). Furthermore, we prove that QSDP with some exponentially small errors is in $\mathsf{PP}$, while the same problem without error is in $\mathsf{NQP}$.

In this work we show that given a connectivity graph $G$ of a $[[n,k,d]]$ quantum code, there exists $\{K_i\}_i, K_i \subset G$, such that $\sum_i |K_i|\in \Omega(k), \ |K_i| \in \Omega(d)$, and the $K_i$'s are $\tilde{\Omega}( \sqrt{{k}/{n}})$-expander. If the codes are classical we show instead that the $K_i$'s are $\tilde{\Omega}\left({{k}/{n}}\right)$-expander. We also show converses to these bounds. In particular, we show that the BPT bound for classical codes is tight in all Euclidean dimensions. Finally, we prove structural theorems for graphs with no "dense" subgraphs which might be of independent interest.

北京阿比特科技有限公司