Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network, which in turn enhances fuel utilization efficiency, air quality, and road safety, benefiting society as a whole. Due to the complexity of long-horizon control and coordination, most prior TSC methods leverage deep reinforcement learning (RL) to search for a control policy and have witnessed great success. However, TSC still faces two significant challenges. 1) The travel time of a vehicle is delayed feedback on the effectiveness of TSC policy at each traffic intersection since it is obtained after the vehicle has left the road network. Although several heuristic reward functions have been proposed as substitutes for travel time, they are usually biased and not leading the policy to improve in the correct direction. 2) The traffic condition of each intersection is influenced by the non-local intersections since vehicles traverse multiple intersections over time. Therefore, the TSC agent is required to leverage both the local observation and the non-local traffic conditions to predict the long-horizontal traffic conditions of each intersection comprehensively. To address these challenges, we propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness and a non-local enhanced TSC agent to better predict future traffic conditions for more precise traffic control. Extensive experiments and ablation studies demonstrate that DenseLight can consistently outperform advanced baselines on various road networks with diverse traffic flows. The code is available at //github.com/junfanlin/DenseLight.
Autonomous vehicles (AVs) are more vulnerable to network attacks due to the high connectivity and diverse communication modes between vehicles and external networks. Deep learning-based Intrusion detection, an effective method for detecting network attacks, can provide functional safety as well as a real-time communication guarantee for vehicles, thereby being widely used for AVs. Existing works well for cyber-attacks such as simple-mode but become a higher false alarm with a resource-limited environment required when the attack is concealed within a contextual feature. In this paper, we present a novel automotive intrusion detection model with lightweight attribution and semantic fusion, named LSF-IDM. Our motivation is based on the observation that, when injected the malicious packets to the in-vehicle networks (IVNs), the packet log presents a strict order of context feature because of the periodicity and broadcast nature of the CAN bus. Therefore, this model first captures the context as the semantic feature of messages by the BERT language framework. Thereafter, the lightweight model (e.g., BiLSTM) learns the fused feature from an input packet's classification and its output distribution in BERT based on knowledge distillation. Experiment results demonstrate the effectiveness of our methods in defending against several representative attacks from IVNs. We also perform the difference analysis of the proposed method with lightweight models and Bert to attain a deeper understanding of how the model balance detection performance and model complexity.
Latent Graph Inference (LGI) relaxed the reliance of Graph Neural Networks (GNNs) on a given graph topology by dynamically learning it. However, most of LGI methods assume to have a (noisy, incomplete, improvable, ...) input graph to rewire and can solely learn regular graph topologies. In the wake of the success of Topological Deep Learning (TDL), we study Latent Topology Inference (LTI) for learning higher-order cell complexes (with sparse and not regular topology) describing multi-way interactions between data points. To this aim, we introduce the Differentiable Cell Complex Module (DCM), a novel learnable function that computes cell probabilities in the complex to improve the downstream task. We show how to integrate DCM with cell complex message passing networks layers and train it in a end-to-end fashion, thanks to a two-step inference procedure that avoids an exhaustive search across all possible cells in the input, thus maintaining scalability. Our model is tested on several homophilic and heterophilic graph datasets and it is shown to outperform other state-of-the-art techniques, offering significant improvements especially in cases where an input graph is not provided.
Attacks on Federated Learning (FL) can severely reduce the quality of the generated models and limit the usefulness of this emerging learning paradigm that enables on-premise decentralized learning. However, existing untargeted attacks are not practical for many scenarios as they assume that i) the attacker knows every update of benign clients, or ii) the attacker has a large dataset to locally train updates imitating benign parties. In this paper, we propose a data-free untargeted attack (DFA) that synthesizes malicious data to craft adversarial models without eavesdropping on the transmission of benign clients at all or requiring a large quantity of task-specific training data. We design two variants of DFA, namely DFA-R and DFA-G, which differ in how they trade off stealthiness and effectiveness. Specifically, DFA-R iteratively optimizes a malicious data layer to minimize the prediction confidence of all outputs of the global model, whereas DFA-G interactively trains a malicious data generator network by steering the output of the global model toward a particular class. Experimental results on Fashion-MNIST, Cifar-10, and SVHN show that DFA, despite requiring fewer assumptions than existing attacks, achieves similar or even higher attack success rate than state-of-the-art untargeted attacks against various state-of-the-art defense mechanisms. Concretely, they can evade all considered defense mechanisms in at least 50% of the cases for CIFAR-10 and often reduce the accuracy by more than a factor of 2. Consequently, we design REFD, a defense specifically crafted to protect against data-free attacks. REFD leverages a reference dataset to detect updates that are biased or have a low confidence. It greatly improves upon existing defenses by filtering out the malicious updates and achieves high global model accuracy
Autonomous vehicles (AVs) are more vulnerable to network attacks due to the high connectivity and diverse communication modes between vehicles and external networks. Deep learning-based Intrusion detection, an effective method for detecting network attacks, can provide functional safety as well as a real-time communication guarantee for vehicles, thereby being widely used for AVs. Existing works well for cyber-attacks such as simple-mode but become a higher false alarm with a resource-limited environment required when the attack is concealed within a contextual feature. In this paper, we present a lightweight intrusion detection model based on semantic fusion, named LSF-IDM. Our motivation is based on the observation that, when injected the malicious packets to the in-vehicle networks (IVNs), the packet log presents a strict order of context feature because of the periodicity and broadcast nature of the CAN bus. Therefore, this model first captures the context as the semantic feature of messages by the BERT language framework. Thereafter, the lightweight model (e.g., BiLSTM) learns the fused feature from an input packet's classification and its output distribution in BERT based on knowledge distillation. Experiment results demonstrate the effectiveness of our methods in defending against several representative attacks from IVNs. We also perform the difference analysis of the proposed method with lightweight models and Bert to attain a deeper understanding of how the model balance detection performance and model complexity.
Headland maneuvering is a crucial aspect of unmanned field operations for autonomous agricultural vehicles (AAVs). While motion planning for headland turning in open fields has been extensively studied and integrated into commercial auto-guidance systems, the existing methods primarily address scenarios with ample headland space and thus may not work in more constrained headland geometries. Commercial orchards often contain narrow and irregularly shaped headlands, which may include static obstacles,rendering the task of planning a smooth and collision-free turning trajectory difficult. To address this challenge, we propose an optimization-based motion planning algorithm for headland turning under geometrical constraints imposed by field geometry and obstacles.
While FastSpeech2 aims to integrate aspects of speech such as pitch, energy, and duration as conditional inputs, it still leaves scope for richer representations. As a part of this work, we leverage representations from various Self-Supervised Learning (SSL) models to enhance the quality of the synthesized speech. In particular, we pass the FastSpeech2 encoder's length-regulated outputs through a series of encoder layers with the objective of reconstructing the SSL representations. In the SALTTS-parallel implementation, the representations from this second encoder are used for an auxiliary reconstruction loss with the SSL features. The SALTTS-cascade implementation, however, passes these representations through the decoder in addition to having the reconstruction loss. The richness of speech characteristics from the SSL features reflects in the output speech quality, with the objective and subjective evaluation measures of the proposed approach outperforming the baseline FastSpeech2.
The 4D Millimeter wave (mmWave) radar is a promising technology for vehicle sensing due to its cost-effectiveness and operability in adverse weather conditions. However, the adoption of this technology has been hindered by sparsity and noise issues in radar point cloud data. This paper introduces spatial multi-representation fusion (SMURF), a novel approach to 3D object detection using a single 4D imaging radar. SMURF leverages multiple representations of radar detection points, including pillarization and density features of a multi-dimensional Gaussian mixture distribution through kernel density estimation (KDE). KDE effectively mitigates measurement inaccuracy caused by limited angular resolution and multi-path propagation of radar signals. Additionally, KDE helps alleviate point cloud sparsity by capturing density features. Experimental evaluations on View-of-Delft (VoD) and TJ4DRadSet datasets demonstrate the effectiveness and generalization ability of SMURF, outperforming recently proposed 4D imaging radar-based single-representation models. Moreover, while using 4D imaging radar only, SMURF still achieves comparable performance to the state-of-the-art 4D imaging radar and camera fusion-based method, with an increase of 1.22% in the mean average precision on bird's-eye view of TJ4DRadSet dataset and 1.32% in the 3D mean average precision on the entire annotated area of VoD dataset. Our proposed method demonstrates impressive inference time and addresses the challenges of real-time detection, with the inference time no more than 0.05 seconds for most scans on both datasets. This research highlights the benefits of 4D mmWave radar and is a strong benchmark for subsequent works regarding 3D object detection with 4D imaging radar.
Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.