In this paper, we investigate the problem of multi-domain translation: given an element $a$ of domain $A$, we would like to generate a corresponding $b$ sample in another domain $B$, and vice versa. Acquiring supervision in multiple domains can be a tedious task, also we propose to learn this translation from one domain to another when supervision is available as a pair $(a,b)\sim A\times B$ and leveraging possible unpaired data when only $a\sim A$ or only $b\sim B$ is available. We introduce a new unified framework called Latent Space Mapping (\model) that exploits the manifold assumption in order to learn, from each domain, a latent space. Unlike existing approaches, we propose to further regularize each latent space using available domains by learning each dependency between pairs of domains. We evaluate our approach in three tasks performing i) synthetic dataset with image translation, ii) real-world task of semantic segmentation for medical images, and iii) real-world task of facial landmark detection.
Augmenting pretrained language models (LMs) with a vision encoder (e.g., Flamingo) has obtained state-of-the-art results in image-to-text generation. However, these models store all the knowledge within their parameters, thus often requiring enormous model parameters to model the abundant visual concepts and very rich textual descriptions. Additionally, they are inefficient in incorporating new data, requiring a computational-expensive fine-tuning process. In this work, we introduce a Retrieval-augmented Visual Language Model, Re-ViLM, built upon the Flamingo, that supports retrieving the relevant knowledge from the external database for zero and in-context few-shot image-to-text generations. By storing certain knowledge explicitly in the external database, our approach reduces the number of model parameters and can easily accommodate new data during evaluation by simply updating the database. We also construct an interleaved image and text data that facilitates in-context few-shot learning capabilities. We demonstrate that Re-ViLM significantly boosts performance for image-to-text generation tasks, especially for zero-shot and few-shot generation in out-of-domain settings with 4 times less parameters compared with baseline methods.
By virtue of being prevalently written in natural language (NL), requirements are prone to various defects, e.g., inconsistency and incompleteness. As such, requirements are frequently subject to quality assurance processes. These processes, when carried out entirely manually, are tedious and may further overlook important quality issues due to time and budget pressures. In this paper, we propose QAssist -- a question-answering (QA) approach that provides automated assistance to stakeholders, including requirements engineers, during the analysis of NL requirements. Posing a question and getting an instant answer is beneficial in various quality-assurance scenarios, e.g., incompleteness detection. Answering requirements-related questions automatically is challenging since the scope of the search for answers can go beyond the given requirements specification. To that end, QAssist provides support for mining external domain-knowledge resources. Our work is one of the first initiatives to bring together QA and external domain knowledge for addressing requirements engineering challenges. We evaluate QAssist on a dataset covering three application domains and containing a total of 387 question-answer pairs. We experiment with state-of-the-art QA methods, based primarily on recent large-scale language models. In our empirical study, QAssist localizes the answer to a question to three passages within the requirements specification and within the external domain-knowledge resource with an average recall of 90.1% and 96.5%, respectively. QAssist extracts the actual answer to the posed question with an average accuracy of 84.2%. Keywords: Natural-language Requirements, Question Answering (QA), Language Models, Natural Language Processing (NLP), Natural Language Generation (NLG), BERT, T5.
Generalized Zero-Shot Learning (GZSL) and Open-Set Recognition (OSR) are two mainstream settings that greatly extend conventional visual object recognition. However, the limitations of their problem settings are not negligible. The novel categories in GZSL require pre-defined semantic labels, making the problem setting less realistic; the oversimplified unknown class in OSR fails to explore the innate fine-grained and mixed structures of novel categories. In light of this, we are motivated to consider a new problem setting named Zero-Knowledge Zero-Shot Learning (ZK-ZSL) that assumes no prior knowledge of novel classes and aims to classify seen and unseen samples and recover semantic attributes of the fine-grained novel categories for further interpretation. To achieve this, we propose a novel framework that recovers the clustering structures of both seen and unseen categories where the seen class structures are guided by source labels. In addition, a structural alignment loss is designed to aid the semantic learning of unseen categories with their recovered structures. Experimental results demonstrate our method's superior performance in classification and semantic recovery on four benchmark datasets.
While developing perception based deep learning models, the benefit of synthetic data is enormous. However, performance of networks trained with synthetic data for certain computer vision tasks degrade significantly when tested on real world data due to the domain gap between them. One of the popular solutions in bridging this gap between synthetic and actual world data is to frame it as a domain adaptation task. In this paper, we propose and evaluate novel ways for the betterment of such approaches. In particular we build upon the method of UNIT-GAN. In normal GAN training for the task of domain translation, pairing of images from both the domains (viz, real and synthetic) is done randomly. We propose a novel method to efficiently incorporate semantic supervision into this pair selection, which helps in boosting the performance of the model along with improving the visual quality of such transformed images. We illustrate our empirical findings on Cityscapes \cite{cityscapes} and challenging synthetic dataset Synscapes. Though the findings are reported on the base network of UNIT-GAN, they can be easily extended to any other similar network.
In recommender systems, reinforcement learning solutions have effectively boosted recommendation performance because of their ability to capture long-term user-system interaction. However, the action space of the recommendation policy is a list of items, which could be extremely large with a dynamic candidate item pool. To overcome this challenge, we propose a hyper-actor and critic learning framework where the policy decomposes the item list generation process into a hyper-action inference step and an effect-action selection step. The first step maps the given state space into a vectorized hyper-action space, and the second step selects the item list based on the hyper-action. In order to regulate the discrepancy between the two action spaces, we design an alignment module along with a kernel mapping function for items to ensure inference accuracy and include a supervision module to stabilize the learning process. We build simulated environments on public datasets and empirically show that our framework is superior in recommendation compared to standard RL baselines.
Sign language gloss translation aims to translate the sign glosses into spoken language texts, which is challenging due to the scarcity of labeled gloss-text parallel data. Back translation (BT), which generates pseudo-parallel data by translating in-domain spoken language texts into sign glosses, has been applied to alleviate the data scarcity problem. However, the lack of large-scale high-quality domain spoken language text data limits the effect of BT. In this paper, to overcome the limitation, we propose a Prompt based domain text Generation (PGEN) approach to produce the large-scale in-domain spoken language text data. Specifically, PGEN randomly concatenates sentences from the original in-domain spoken language text data as prompts to induce a pre-trained language model (i.e., GPT-2) to generate spoken language texts in a similar style. Experimental results on three benchmarks of sign language gloss translation in varied languages demonstrate that BT with spoken language texts generated by PGEN significantly outperforms the compared methods. In addition, as the scale of spoken language texts generated by PGEN increases, the BT technique can achieve further improvements, demonstrating the effectiveness of our approach. We release the code and data for facilitating future research in this field.
Exemplar-based image translation refers to the task of generating images with the desired style, while conditioning on certain input image. Most of the current methods learn the correspondence between two input domains and lack the mining of information within the domains. In this paper, we propose a more general learning approach by considering two domain features as a whole and learning both inter-domain correspondence and intra-domain potential information interactions. Specifically, we propose a Cross-domain Feature Fusion Transformer (CFFT) to learn inter- and intra-domain feature fusion. Based on CFFT, the proposed CFFT-GAN works well on exemplar-based image translation. Moreover, CFFT-GAN is able to decouple and fuse features from multiple domains by cascading CFFT modules. We conduct rich quantitative and qualitative experiments on several image translation tasks, and the results demonstrate the superiority of our approach compared to state-of-the-art methods. Ablation studies show the importance of our proposed CFFT. Application experimental results reflect the potential of our method.
Current methods of blended targets domain adaptation (BTDA) usually infer or consider domain label information but underemphasize hybrid categorical feature structures of targets, which yields limited performance, especially under the label distribution shift. We demonstrate that domain labels are not directly necessary for BTDA if categorical distributions of various domains are sufficiently aligned even facing the imbalance of domains and the label distribution shift of classes. However, we observe that the cluster assumption in BTDA does not comprehensively hold. The hybrid categorical feature space hinders the modeling of categorical distributions and the generation of reliable pseudo labels for categorical alignment. To address these, we propose a categorical domain discriminator guided by uncertainty to explicitly model and directly align categorical distributions $P(Z|Y)$. Simultaneously, we utilize the low-level features to augment the single source features with diverse target styles to rectify the biased classifier $P(Y|Z)$ among diverse targets. Such a mutual conditional alignment of $P(Z|Y)$ and $P(Y|Z)$ forms a mutual reinforced mechanism. Our approach outperforms the state-of-the-art in BTDA even compared with methods utilizing domain labels, especially under the label distribution shift, and in single target DA on DomainNet.
This paper introduces video domain generalization where most video classification networks degenerate due to the lack of exposure to the target domains of divergent distributions. We observe that the global temporal features are less generalizable, due to the temporal domain shift that videos from other unseen domains may have an unexpected absence or misalignment of the temporal relations. This finding has motivated us to solve video domain generalization by effectively learning the local-relation features of different timescales that are more generalizable, and exploiting them along with the global-relation features to maintain the discriminability. This paper presents the VideoDG framework with two technical contributions. The first is a new deep architecture named the Adversarial Pyramid Network, which improves the generalizability of video features by capturing the local-relation, global-relation, and cross-relation features progressively. On the basis of pyramid features, the second contribution is a new and robust approach of adversarial data augmentation that can bridge different video domains by improving the diversity and quality of augmented data. We construct three video domain generalization benchmarks in which domains are divided according to different datasets, different consequences of actions, or different camera views, respectively. VideoDG consistently outperforms the combinations of previous video classification models and existing domain generalization methods on all benchmarks.
Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.