亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In many applications, the governing PDE to be solved numerically contains a stiff component. When this component is linear, an implicit time stepping method that is unencumbered by stability restrictions is often preferred. On the other hand, if the stiff component is nonlinear, the complexity and cost per step of using an implicit method is heightened, and explicit methods may be preferred for their simplicity and ease of implementation. In this article, we analyze new and existing linearly stabilized schemes for the purpose of integrating stiff nonlinear PDEs in time. These schemes compute the nonlinear term explicitly and, at the cost of solving a linear system with a matrix that is fixed throughout, are unconditionally stable, thus combining the advantages of explicit and implicit methods. Applications are presented to illustrate the use of these methods.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

We present new approaches for solving constrained multicomponent nonlinear Schr\"odinger equations in arbitrary dimensions. The idea is to introduce an artificial time and solve an extended damped second order dynamic system whose stationary solution is the solution to the time-independent nonlinear Schr\"odinger equation. Constraints are often considered by projection onto the constraint set, here we include them explicitly into the dynamical system. We show the applicability and efficiency of the methods on examples of relevance in modern physics applications.

We propose a fast algorithm for the probabilistic solution of boundary value problems (BVPs), which are ordinary differential equations subject to boundary conditions. In contrast to previous work, we introduce a Gauss--Markov prior and tailor it specifically to BVPs, which allows computing a posterior distribution over the solution in linear time, at a quality and cost comparable to that of well-established, non-probabilistic methods. Our model further delivers uncertainty quantification, mesh refinement, and hyperparameter adaptation. We demonstrate how these practical considerations positively impact the efficiency of the scheme. Altogether, this results in a practically usable probabilistic BVP solver that is (in contrast to non-probabilistic algorithms) natively compatible with other parts of the statistical modelling tool-chain.

In this paper, we propose a numerical method to solve the mass-conserved Ohta-Kawasaki equation with finite element discretization. An unconditional stable convex split-ting scheme is applied to time approximation. The Newton method and its variant are used to address the implicitly nonlinear term. We rigorously analyze the convergence of the Newton iteration methods. Theoretical results demonstrate that two Newton iteration methods have the same convergence rate, and the Newton method has a smaller convergent factor than the variant one. To reduce the condition number of discretized linear system, we design two efficient block preconditioners and analyze their spectral distribution. Finally, we offer numerical examples to support the theoretical analysis and indicate the efficiency of the proposed numerical methods for the mass-conserved Ohta-Kawasaki equation.

The synthesis of suboptimal feedback laws for controlling nonlinear dynamics arising from semi-discretized PDEs is studied. An approach based on the State-dependent Riccati Equation (SDRE) is presented for H2 and Hinf control problems. Depending on the nonlinearity and the dimension of the resulting problem, offline, online, and hybrid offline-online alternatives to the SDRE synthesis are proposed. The hybrid offline-online SDRE method reduces to the sequential solution of Lyapunov equations, effectively enabling the computation of suboptimal feedback controls for two-dimensional PDEs. Numerical tests for the Sine-Gordon, degenerate Zeldovich, and viscous Burgers' PDEs are presented, providing a thorough experimental assessment of the proposed methodology.

Runge-Kutta (RK) schemes, especially Gauss-Legendre and some other fully implicit RK (FIRK) schemes, are desirable for the time integration of parabolic partial differential equations due to their A-stability and high-order accuracy. However, it is significantly more challenging to construct optimal preconditioners for them compared to diagonally implicit RK (or DIRK) schemes. To address this challenge, we first introduce mathematically optimal preconditioners called block complex Schur decomposition (BCSD), block real Schur decomposition (BRSD), and block Jordan form (BJF), motivated by block-circulant preconditioners and Jordan form solution techniques for IRK. We then derive an efficient, near-optimal singly-diagonal approximate BRSD (SABRSD) by approximating the quasi-triangular matrix in real Schur decomposition using an optimized upper-triangular matrix with a single diagonal value. A desirable feature of SABRSD is that it has comparable memory requirements and factorization (or setup) cost as singly DIRK (SDIRK). We approximate the diagonal blocks in these preconditioning techniques using an incomplete factorization with (near) linear complexity, such as multilevel ILU, ILU(0), or a multigrid method with an ILU-based smoother. We apply the block preconditioners in right-preconditioned GMRES to solve the advection-diffusion equation in 3D using finite element and finite difference methods. We show that BCSD, BRSD, and BJF significantly outperform other preconditioners in terms of GMRES iterations, and SABRSD is competitive with them and the prior state of the art in terms of computational cost while requiring the least amount of memory.

In this work we propose a new, arbitrary order space-time finite element discretisation for Hamiltonian PDEs in multisymplectic formulation. We show that the new method which is obtained by using both continuous and discontinuous discretisations in space, admits a local and global conservation law of energy. We also show existence and uniqueness of solutions of the discrete equations. Further, we illustrate the error behaviour and the conservation properties of the proposed discretisation in extensive numerical experiments on the linear and nonlinear wave equation and on the nonlinear Schr\"odinger equation.

We introduce a symmetric fractional-order reduction (SFOR) method to construct numerical algorithms on general nonuniform temporal meshes for semilinear fractional diffusion-wave equations. By using the novel order reduction method, the governing problem is transformed to an equivalent coupled system, where the explicit orders of time-fractional derivatives involved are all $\alpha/2$ $(1<\alpha<2)$. The linearized L1 scheme and Alikhanov scheme are then proposed on general time meshes. Under some reasonable regularity assumptions and weak restrictions on meshes, the optimal convergence is derived for the two kinds of difference schemes by $H^2$ energy method. An adaptive time stepping strategy which based on the (fast linearized) L1 and Alikhanov algorithms is designed for the semilinear diffusion-wave equations. Numerical examples are provided to confirm the accuracy and efficiency of proposed algorithms.

We present a (partial) historical summary of the mathematical analysis of finite differences and finite volumes methods, paying a special attention to the Lax-Richtmyer and Lax-Wendroff theorems. We then state a Lax-Wendroff consistency result for convection operators on staggered grids (often used in fluid flow simulations), which illustrates a recent generalization of the flux consistency notion designed to cope with general discrete functions.

We introduce three new generative models for time series. Based on Euler discretization and Wasserstein metrics, they are able to capture time marginal distributions and temporal dynamics. Two of these methods rely on the adaptation of generative adversarial networks (GANs) to time series. Both of them outperform state-of-the-art benchmarks by capturing the underlying temporal structure on synthetic time series. The third algorithm, called Conditional Euler Generator (CEGEN), minimizes a dedicated distance between the transition probability distributions over all time steps. In the context of Ito processes, we provide theoretical guarantees that minimizing this criterion implies accurate estimations of the drift and volatility parameters. We demonstrate empirically that CEGEN outperforms state-of-the-art and GAN generators on both marginal and temporal dynamics metrics. Besides, it identifies accurate correlation structures in high dimension. When few data points are available, we verify the effectiveness of CEGEN, when combined with transfer learning methods on Monte Carlo simulations. Finally, we illustrate the robustness of our method on various real-world datasets.

We explore Few-Shot Learning (FSL) for Relation Classification (RC). Focusing on the realistic scenario of FSL, in which a test instance might not belong to any of the target categories (none-of-the-above, aka NOTA), we first revisit the recent popular dataset structure for FSL, pointing out its unrealistic data distribution. To remedy this, we propose a novel methodology for deriving more realistic few-shot test data from available datasets for supervised RC, and apply it to the TACRED dataset. This yields a new challenging benchmark for FSL RC, on which state of the art models show poor performance. Next, we analyze classification schemes within the popular embedding-based nearest-neighbor approach for FSL, with respect to constraints they impose on the embedding space. Triggered by this analysis we propose a novel classification scheme, in which the NOTA category is represented as learned vectors, shown empirically to be an appealing option for FSL.

北京阿比特科技有限公司