In this paper, we propose a numerical method to solve the mass-conserved Ohta-Kawasaki equation with finite element discretization. An unconditional stable convex split-ting scheme is applied to time approximation. The Newton method and its variant are used to address the implicitly nonlinear term. We rigorously analyze the convergence of the Newton iteration methods. Theoretical results demonstrate that two Newton iteration methods have the same convergence rate, and the Newton method has a smaller convergent factor than the variant one. To reduce the condition number of discretized linear system, we design two efficient block preconditioners and analyze their spectral distribution. Finally, we offer numerical examples to support the theoretical analysis and indicate the efficiency of the proposed numerical methods for the mass-conserved Ohta-Kawasaki equation.
Archetypal analysis is an unsupervised learning method for exploratory data analysis. One major challenge that limits the applicability of archetypal analysis in practice is the inherent computational complexity of the existing algorithms. In this paper, we provide a novel approximation approach to partially address this issue. Utilizing probabilistic ideas from high-dimensional geometry, we introduce two preprocessing techniques to reduce the dimension and representation cardinality of the data, respectively. We prove that, provided the data is approximately embedded in a low-dimensional linear subspace and the convex hull of the corresponding representations is well approximated by a polytope with a few vertices, our method can effectively reduce the scaling of archetypal analysis. Moreover, the solution of the reduced problem is near-optimal in terms of prediction errors. Our approach can be combined with other acceleration techniques to further mitigate the intrinsic complexity of archetypal analysis. We demonstrate the usefulness of our results by applying our method to summarize several moderately large-scale datasets.
Extropy and its properties are explored to quantify the uncertainty. In this paper, we obtain alternative expressions for cumulative residual extropy and cumulative extropy. We obtain simple estimators of cumulative (residual) extropy. Asymptotic properties of the proposed estimators are studied. We also present new estimators of cumulative (residual) extropy when the data contains right censored observations. Finite sample performance of the estimators is evaluated through Monte Carlo simulation studies. We use the proposed estimators to analyze different real data. Finally, we discuss several open problems associated with dynamic and weighted extropy measures.
The combination of numerical integration and deep learning, i.e., ODE-net, has been successfully employed in a variety of applications. In this work, we introduce inverse modified differential equations (IMDE) to contribute to the behaviour and error analysis of discovery of dynamics using ODE-net. It is shown that the difference between the learned ODE and the truncated IMDE is bounded by the sum of learning loss and a discrepancy which can be made sub exponentially small. In addition, we deduce that the total error of ODE-net is bounded by the sum of discrete error and learning loss. Furthermore, with the help of IMDE, theoretical results on learning Hamiltonian system are derived. Several experiments are performed to numerically verify our theoretical results.
In the estimation of the mean matrix in a multivariate normal distribution, the generalized Bayes estimators with closed forms are provided, and the sufficient conditions for their minimaxity are derived relative to both matrix and scalar quadratic loss functions. The generalized Bayes estimators of the covariance matrix are also given with closed forms, and the dominance properties are discussed for the Stein loss function.
In this paper, we propose and analyze a temporally second-order accurate, fully discrete finite element method for the magnetohydrodynamic (MHD) equations. A modified Crank--Nicolson method is used to discretize the model and appropriate semi-implicit treatments are applied to the fluid convection term and two coupling terms. These semi-implicit approximations result in a linear system with variable coefficients for which the unique solvability can be proved theoretically. In addition, we use a decoupling projection method of the Van Kan type \cite{vankan1986} in the Stokes solver, which computes the intermediate velocity field based on the gradient of the pressure from the previous time level, and enforces the incompressibility constraint via the Helmholtz decomposition of the intermediate velocity field. The energy stability of the scheme is theoretically proved, in which the decoupled Stokes solver needs to be analyzed in details. Optimal-order convergence of $\mathcal{O} (\tau^2+h^{r+1})$ in the discrete $L^\infty(0,T;L^2)$ norm is proved for the proposed decoupled projection finite element scheme, where $\tau$ and $h$ are the time stepsize and spatial mesh size, respectively, and $r$ is the degree of the finite elements. Existing error estimates of second-order projection methods of the Van Kan type \cite{vankan1986} were only established in the discrete $L^2(0,T;L^2)$ norm for the Navier--Stokes equations. Numerical examples are provided to illustrate the theoretical results.
We consider the problem of approximating a function in general nonlinear subsets of $L^2$ when only a weighted Monte Carlo estimate of the $L^2$-norm can be computed. Of particular interest in this setting is the concept of sample complexity, the number of samples that are necessary to recover the best approximation. Bounds for this quantity have been derived in a previous work and depend primarily on the model class and are not influenced positively by the regularity of the sought function. This result however is only a worst-case bound and is not able to explain the remarkable performance of iterative hard thresholding algorithms that is observed in practice. We reexamine the results of the previous paper and derive a new bound that is able to utilize the regularity of the sought function. A critical analysis of our results allows us to derive a sample efficient algorithm for the model set of low-rank tensors. The viability of this algorithm is demonstrated by recovering quantities of interest for a classical high-dimensional random partial differential equation.
In the past decade, there are many works on the finite element methods for the fully nonlinear Hamilton--Jacobi--Bellman (HJB) equations with Cordes condition. The linearised systems have large condition numbers, which depend not only on the mesh size, but also on the parameters in the Cordes condition. This paper is concerned with the design and analysis of auxiliary space preconditioners for the linearised systems of $C^0$ finite element discretization of HJB equations [Calcolo, 58, 2021]. Based on the stable decomposition on the auxiliary spaces, we propose both the additive and multiplicative preconditoners which converge uniformly in the sense that the resulting condition number is independent of both the number of degrees of freedom and the parameter $\lambda$ in Cordes condition. Numerical experiments are carried out to illustrate the efficiency of the proposed preconditioners.
The discrete gradient methods are integrators designed to preserve invariants of ordinary differential equations. From a formal series expansion of a subclass of these methods, we derive conditions for arbitrarily high order. We derive specific results for the average vector field discrete gradient, from which we get P-series methods in the general case, and B-series methods for canonical Hamiltonian systems. Higher order schemes are presented, and their applications are demonstrated on the H\'enon-Heiles system and a Lotka-Volterra system, and on both the training and integration of a pendulum system learned from data by a neural network.
Combining three themes: port-Hamiltonian energy-based modelling, structural analysis as used in the circuit world, and structural analysis of general differential-algebraic equations, we form a new model for electrical circuits, the compact port-Hamiltonian equations. They have remarkable simplicity and symmetry, and always have index at most 1 and other good numerical properties. The method has been implemented in Matlab. We give proofs and numerical results.
In this paper a problem of numerical simulation of hydraulic fractures is considered. An efficient algorithm of solution, based on the universal scheme introduced earlier by the authors for the fractures propagating in elastic solids, is proposed. The algorithm utilizes a FEM based subroutine to compute deformation of the fractured material. Consequently, the computational scheme retains the relative simplicity of its original version and simultaneously enables one to deal with more advanced cases of the fractured material properties and configurations. In particular, the problems of poroelasticity, plasticity and spatially varying properties of the fractured material can be analyzed. The accuracy and efficiency of the proposed algorithm are verified against analytical benchmark solutions. The algorithm capabilities are demonstrated using the example of the hydraulic fracture propagating in complex geological settings.