亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Performance contracts used for servitized business models enable consideration of overall life-cycle costs rather than just production costs. However, practical implementation of performance contracts has been limited due to challenges with performance evaluation, accountability, and financial concepts. As a solution, this paper proposes the connection of the digital building twin with blockchain-based smart contracts to execute performance-based digital payments. First, we conceptualize a technical architecture to connect blockchain to digital building twins. The digital building twin stores and evaluates performance data in real-time while the blockchain ensures transparency and trusted execution of automatic performance evaluation and rewards through smart contracts. Next, we demonstrate the feasibility of both the concept and technical architecture by integrating the Ethereum blockchain with digital building models and sensors via the Siemens building twin platform. The resulting prototype is the first full-stack implementation of a performance-based smart contract in the built environment.

相關內容

Concept drift in process mining (PM) is a challenge as classical methods assume processes are in a steady-state, i.e., events share the same process version. We conducted a systematic literature review on the intersection of these areas, and thus, we review concept drift in process mining and bring forward a taxonomy of existing techniques for drift detection and online process mining for evolving environments. Existing works depict that (i) PM still primarily focuses on offline analysis, and (ii) the assessment of concept drift techniques in processes is cumbersome due to the lack of common evaluation protocol, datasets, and metrics.

Making an updated and as-built model plays an important role in the life-cycle of a process plant. In particular, Digital Twin models must be precise to guarantee the efficiency and reliability of the systems. Data-driven models can simulate the latest behavior of the sub-systems by considering uncertainties and life-cycle related changes. This paper presents a step-by-step concept for hybrid Digital Twin models of process plants using an early implemented prototype as an example. It will detail the steps for updating the first-principles model and Digital Twin of a brownfield process system using data-driven models of the process equipment. The challenges for generation of an as-built hybrid Digital Twin will also be discussed. With the help of process history data to teach Machine Learning models, the implemented Digital Twin can be continually improved over time and this work in progress can be further optimized.

Digital vaccine passports are one of the main solutions which would allow the restart of travel in a post COVID-19 world. Trust, scalability and security are all key challenges one must overcome in implementing a vaccine passport. Initial approaches attempt to solve this problem by using centralised systems with trusted authorities. However, sharing vaccine passport data between different organisations, regions and countries has become a major challenge. This paper designs a new platform architecture for creating, storing and verifying digital COVID-19 vaccine certifications. The platform makes use of the InterPlanetary File System (IPFS) to guarantee there is no single point of failure and allow data to be securely distributed globally. Blockchain and smart contracts are also integrated into the platform to define policies and log access rights to vaccine passport data while ensuring all actions are audited and verifiably immutable. Our proposed platform realises General Data Protection Regulation (GDPR) requirements in terms of user consent, data encryption, data erasure and accountability obligations. We assess the scalability and performance of the platform using IPFS and Blockchain test networks.

Blockchain has been increasingly used as a software component to enable decentralisation in software architecture for a variety of applications. Blockchain governance has received considerable attention to ensure the safe and appropriate use and evolution of blockchain, especially after the Ethereum DAO attack in 2016. However, there are no systematic efforts to analyse existing governance solutions. To understand the state-of-the-art of blockchain governance, we conducted a systematic literature review with 35 primary studies. The extracted data from primary studies are synthesised to answer identified research questions. The study results reveal several major findings: 1) governance can improve the adaptability and upgradability of blockchain, whilst the current studies neglect broader ethical responsibilities as the objectives of blockchain governance; 2) governance is along with the development process of a blockchain platform, while ecosystem-level governance process is missing, and; 3) the responsibilities and capabilities of blockchain stakeholders are briefly discussed, whilst the decision rights, accountability, and incentives of blockchain stakeholders are still under studied. We provide actionable guidelines for academia and practitioners to use throughout the lifecycle of blockchain, and identify future trends to support researchers in this area.

Deep learning (DL) has been increasingly applied to a variety of domains. The programming paradigm shift from traditional systems to DL systems poses unique challenges in engineering DL systems. Performance is one of the challenges, and performance bugs(PBs) in DL systems can cause severe consequences such as excessive resource consumption and financial loss. While bugs in DL systems have been extensively investigated, PBs in DL systems have hardly been explored. To bridge this gap, we present the first comprehensive study to characterize symptoms, root causes, and introducing and exposing stages of PBs in DL systems developed in TensorFLow and Keras, with a total of 238 PBs collected from 225 StackOverflow posts. Our findings shed light on the implications on developing high performance DL systems, and detecting and localizing PBs in DL systems. We also build the first benchmark of 56 PBs in DL systems, and assess the capability of existing approaches in tackling them. Moreover, we develop a static checker DeepPerf to detect three types of PBs, and identify 488 new PBs in 130 GitHub projects.62 and 18 of them have been respectively confirmed and fixed by developers.

Integrated Sensing And Communication (ISAC)forms a symbiosis between the human need for communication and the need for increasing productivity, by extracting environmental information leveraging the communication network. As multiple sensory already create a perception of the environment, an investigation into the advantages of ISAC compare to such modalities is required. Therefore, we introduce MaxRay, an ISAC framework allowing to simulate communication, sensing, and additional sensory jointly. Emphasizing the challenges for creating such sensing networks, we introduce the required propagation properties for sensing and how they are leveraged. To compare the performance of the different sensing techniques, we analyze four commonly used metrics used in different fields and evaluate their advantages and disadvantages for sensing. We depict that a metric based on prominence is suitable to cover most algorithms. Further we highlight the requirement of clutter removal algorithms, using two standard clutter removal techniques to detect a target in a typical industrial scenario. In general a versatile framework, allowing to create automatically labeled datasets to investigate a large variety of tasks is demonstrated.

The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.

Deep learning has penetrated all aspects of our lives and brought us great convenience. However, the process of building a high-quality deep learning system for a specific task is not only time-consuming but also requires lots of resources and relies on human expertise, which hinders the development of deep learning in both industry and academia. To alleviate this problem, a growing number of research projects focus on automated machine learning (AutoML). In this paper, we provide a comprehensive and up-to-date study on the state-of-the-art AutoML. First, we introduce the AutoML techniques in details according to the machine learning pipeline. Then we summarize existing Neural Architecture Search (NAS) research, which is one of the most popular topics in AutoML. We also compare the models generated by NAS algorithms with those human-designed models. Finally, we present several open problems for future research.

This paper identifies the factors that have an impact on mobile recommender systems. Recommender systems have become a technology that has been widely used by various online applications in situations where there is an information overload problem. Numerous applications such as e-Commerce, video platforms and social networks provide personalized recommendations to their users and this has improved the user experience and vendor revenues. The development of recommender systems has been focused mostly on the proposal of new algorithms that provide more accurate recommendations. However, the use of mobile devices and the rapid growth of the internet and networking infrastructure has brought the necessity of using mobile recommender systems. The links between web and mobile recommender systems are described along with how the recommendations in mobile environments can be improved. This work is focused on identifying the links between web and mobile recommender systems and to provide solid future directions that aim to lead in a more integrated mobile recommendation domain.

This paper reports on modern approaches in Information Extraction (IE) and its two main sub-tasks of Named Entity Recognition (NER) and Relation Extraction (RE). Basic concepts and the most recent approaches in this area are reviewed, which mainly include Machine Learning (ML) based approaches and the more recent trend to Deep Learning (DL) based methods.

北京阿比特科技有限公司