Preprints play an increasingly critical role in academic communities. There are many reasons driving researchers to post their manuscripts to preprint servers before formal submission to journals or conferences, but the use of preprints has also sparked considerable controversy, especially surrounding the claim of priority. In this paper, a case study of computer science preprints submitted to arXiv from 2008 to 2017 is conducted to quantify how many preprints have eventually been printed in peer-reviewed venues. Among those published manuscripts, some are published under different titles and without an update to their preprints on arXiv. In the case of these manuscripts, the traditional fuzzy matching method is incapable of mapping the preprint to the final published version. In view of this issue, we introduce a semantics-based mapping method with the employment of Bidirectional Encoder Representations from Transformers (BERT). With this new mapping method and a plurality of data sources, we find that 66% of all sampled preprints are published under unchanged titles and 11% are published under different titles and with other modifications. A further analysis was then performed to investigate why these preprints but not others were accepted for publication. Our comparison reveals that in the field of computer science, published preprints feature adequate revisions, multiple authorship, detailed abstract and introduction, extensive and authoritative references and available source code.
Reinforcement learning (RL) algorithms face the challenge of limited data efficiency, particularly when dealing with high-dimensional state spaces and large-scale problems. Most RL methods often rely solely on state transition information within the same episode when updating the agent's Critic, which can lead to low data efficiency and sub-optimal training time consumption. Inspired by human-like analogical reasoning abilities, we introduce a novel mesh information propagation mechanism, termed the 'Imagination Mechanism (IM)', designed to significantly enhance the data efficiency of RL algorithms. Specifically, IM enables information generated by a single sample to be effectively broadcasted to different states, instead of simply transmitting in the same episode and it allows the model to better understand the interdependencies between states and learn scarce sample information more efficiently. To promote versatility, we extend the imagination mechanism to function as a plug-and-play module that can be seamlessly and fluidly integrated into other widely adopted RL models. Our experiments demonstrate that Imagination mechanism consistently boosts four mainstream SOTA RL-algorithms, such as SAC, PPO, DDPG, and DQN, by a considerable margin, ultimately leading to superior performance than before across various tasks. For access to our code and data, please visit //github.com/Zero-coder/FECAM.
Finding a minimum is an essential part of mathematical models, and it plays an important role in some optimization problems. Durr and Hoyer proposed a quantum searching algorithm (DHA), with a certain probability of success, to achieve quadratic speed than classical ones. In this paper, we propose an optimized quantum minimum searching algorithm with sure-success probability, which utilizes Grover-Long searching to implement the optimal exact searching, and the dynamic strategy to reduce the iterations of our algorithm. Besides, we optimize the oracle circuit to reduce the number of gates by the simplified rules. The performance evaluation including the theoretical success rate and computational complexity shows that our algorithm has higher accuracy and efficiency than DHA algorithm. Finally, a simulation experiment based on Cirq is performed to verify its feasibility.
The main topic of this paper are algorithms for computing Nash equilibria. We cast our particular methods as instances of a general algorithmic abstraction, namely, a method we call {\em algorithmic boosting}, which is also relevant to other fixed-point computation problems. Algorithmic boosting is the principle of computing fixed points by taking (long-run) averages of iterated maps and it is a generalization of exponentiation. We first define our method in the setting of nonlinear maps. Secondly, we restrict attention to convergent linear maps (for computing dominant eigenvectors, for example, in the PageRank algorithm) and show that our algorithmic boosting method can set in motion {\em exponential speedups in the convergence rate}. Thirdly, we show that algorithmic boosting can convert a (weak) non-convergent iterator to a (strong) convergent one. We also consider a {\em variational approach} to algorithmic boosting providing tools to convert a non-convergent continuous flow to a convergent one. Then, by embedding the construction of averages in the design of the iterated map, we constructively prove the existence of Nash equilibria (and, therefore, Brouwer fixed points). We then discuss implementations of averaging and exponentiation, an important matter even for the scalar case. We finally discuss a relationship between dominant (PageRank) eigenvectors and Nash equilibria.
Relative clinical benefits are often visually explored and formally analysed through a (cumulative) meta-analysis. In this manuscript, we introduce and further explore the moving average meta-analysis to aid towards the exploration and visualization of stability in a meta-analysis.
What is the optimal way to approximate a high-dimensional diffusion process by one in which the coordinates are independent? This paper presents a construction, called the \emph{independent projection}, which is optimal for two natural criteria. First, when the original diffusion is reversible with invariant measure $\rho_*$, the independent projection serves as the Wasserstein gradient flow for the relative entropy $H(\cdot\,|\,\rho_*)$ constrained to the space of product measures. This is related to recent Langevin-based sampling schemes proposed in the statistical literature on mean field variational inference. In addition, we provide both qualitative and quantitative results on the long-time convergence of the independent projection, with quantitative results in the log-concave case derived via a new variant of the logarithmic Sobolev inequality. Second, among all processes with independent coordinates, the independent projection is shown to exhibit the slowest growth rate of path-space entropy relative to the original diffusion. This sheds new light on the classical McKean-Vlasov equation and recent variants proposed for non-exchangeable systems, which can be viewed as special cases of the independent projection.
Sequential, multiple assignment randomized trials (SMARTs), which assist in the optimization of adaptive interventions, are growing in popularity in education and behavioral sciences. This is unsurprising, as adaptive interventions reflect the sequential, tailored nature of learning in a classroom or school. Nonetheless, as is true elsewhere in education research, observed effect sizes in education-based SMARTs are frequently small. As a consequence, statistical efficiency is of paramount importance in their analysis. The contributions of this manuscript are two-fold. First, we provide an overview of adaptive interventions and SMART designs for researchers in education science. Second, we propose four techniques that have the potential to improve statistical efficiency in the analysis of SMARTs. We demonstrate the benefits of these techniques in SMART settings both through the analysis of a SMART designed to optimize an adaptive intervention for increasing cognitive behavioral therapy delivery in school settings and through a comprehensive simulation study. Each of the proposed techniques is easily implementable, either with over-the-counter statistical software or through R code provided in an online supplement.
Mediation analysis is widely used for investigating direct and indirect causal pathways through which an effect arises. However, many mediation analysis studies are challenged by missingness in the mediator and outcome. In general, when the mediator and outcome are missing not at random, the direct and indirect effects are not identifiable without further assumptions. In this work, we study the identifiability of the direct and indirect effects under some interpretable mechanisms that allow for missing not at random in the mediator and outcome. We evaluate the performance of statistical inference under those mechanisms through simulation studies and illustrate the proposed methods via the National Job Corps Study.
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. Particularly in automatic biomedical image analysis, chosen performance metrics often do not reflect the domain interest, thus failing to adequately measure scientific progress and hindering translation of ML techniques into practice. To overcome this, our large international expert consortium created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. The framework was developed in a multi-stage Delphi process and is based on the novel concept of a problem fingerprint - a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), data set and algorithm output. Based on the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as a classification task at image, object or pixel level, namely image-level classification, object detection, semantic segmentation, and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool, which also provides a point of access to explore weaknesses, strengths and specific recommendations for the most common validation metrics. The broad applicability of our framework across domains is demonstrated by an instantiation for various biological and medical image analysis use cases.
Natural revision seems so natural: it changes beliefs as little as possible to incorporate new information. Yet, some counterexamples show it wrong. It is so conservative that it never fully believes. It only believes in the current conditions. This is right in some cases and wrong in others. Which is which? The answer requires extending natural revision from simple formulae expressing universal truths (something holds) to conditionals expressing conditional truth (something holds in certain conditions). The extension is based on the basic principles natural revision follows, identified as minimal change, indifference and naivety: change beliefs as little as possible; equate the likeliness of scenarios by default; believe all until contradicted. The extension says that natural revision restricts changes to the current conditions. A comparison with an unrestricting revision shows what exactly the current conditions are. It is not what currently considered true if it contradicts the new information. It includes something more and more unlikely until the new information is at least possible.
ASR systems have become increasingly widespread in recent years. However, their textual outputs often require post-processing tasks before they can be practically utilized. To address this issue, we draw inspiration from the multifaceted capabilities of LLMs and Whisper, and focus on integrating multiple ASR text processing tasks related to speech recognition into the ASR model. This integration not only shortens the multi-stage pipeline, but also prevents the propagation of cascading errors, resulting in direct generation of post-processed text. In this study, we focus on ASR-related processing tasks, including Contextual ASR and multiple ASR post processing tasks. To achieve this objective, we introduce the CPPF model, which offers a versatile and highly effective alternative to ASR processing. CPPF seamlessly integrates these tasks without any significant loss in recognition performance.