亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Consider the family of power divergence statistics based on $n$ trials, each leading to one of $r$ possible outcomes. This includes the log-likelihood ratio and Pearson's statistic as important special cases. It is known that in certain regimes (e.g., when $r$ is of order $n^2$ and the allocation is asymptotically uniform as $n\to\infty$) the power divergence statistic converges in distribution to a linear transformation of a Poisson random variable. We establish explicit error bounds in the Kolmogorov (or uniform) metric to complement this convergence result, which may be applied for any values of $n$, $r$ and the index parameter $\lambda$ for which such a finite-sample bound is meaningful. We further use this Poisson approximation result to derive error bounds in Gaussian approximation of the power divergence statistics.

相關內容

We combine Kronecker products, and quantitative information flow, to give a novel formal analysis for the fine-grained verification of utility in complex privacy pipelines. The combination explains a surprising anomaly in the behaviour of utility of privacy-preserving pipelines -- that sometimes a reduction in privacy results also in a decrease in utility. We use the standard measure of utility for Bayesian analysis, introduced by Ghosh at al., to produce tractable and rigorous proofs of the fine-grained statistical behaviour leading to the anomaly. More generally, we offer the prospect of formal-analysis tools for utility that complement extant formal analyses of privacy. We demonstrate our results on a number of common privacy-preserving designs.

We consider a general linear parabolic problem with extended time boundary conditions (including initial value problems and periodic ones), and approximate it by the implicit Euler scheme in time and the Gradient Discretisation method in space; the latter is in fact a class of methods that includes conforming and nonconforming finite elements, discontinuous Galerkin methods and several others. The main result is an error estimate which holds without supplementary regularity hypothesis on the solution. This result states that the approximation error has the same order as the sum of the interpolation error and the conformity error. The proof of this result relies on an inf-sup inequality in Hilbert spaces which can be used both in the continuous and the discrete frameworks. The error estimate result is illustrated by numerical examples with low regularity of the solution.

The distributed task allocation problem, as one of the most interesting distributed optimization challenges, has received considerable research attention recently. Previous works mainly focused on the task allocation problem in a population of individuals, where there are no constraints for affording task amounts. The latter condition, however, cannot always be hold. In this paper, we study the task allocation problem with constraints of task allocation in a game-theoretical framework. We assume that each individual can afford different amounts of task and the cost function is convex. To investigate the problem in the framework of population games, we construct a potential game and calculate the fitness function for each individual. We prove that when the Nash equilibrium point in the potential game is in the feasible solutions for the limited task allocation problem, the Nash equilibrium point is the unique globally optimal solution. Otherwise, we also derive analytically the unique globally optimal solution. In addition, in order to confirm our theoretical results, we consider the exponential and quadratic forms of cost function for each agent. Two algorithms with the mentioned representative cost functions are proposed to numerically seek the optimal solution to the limited task problems. We further perform Monte Carlo simulations which provide agreeing results with our analytical calculations.

Let the costs $C(i,j)$ for an instance of the asymmetric traveling salesperson problem be independent uniform $[0,1]$ random variables. We consider the efficiency of branch and bound algorithms that use the assignment relaxation as a lower bound. We show that w.h.p. the number of steps taken in any such branch and bound algorithm is $e^{\Omega(n^a)}$ for some small absolute constant $a>0$.

We propose a numerically efficient method for evaluating the random-coding union bound with parameter $s$ on the error probability achievable in the finite-blocklength regime by a pilot-assisted transmission scheme employing Gaussian codebooks and operating over a memoryless block-fading channel. Our method relies on the saddlepoint approximation, which, differently from previous results reported for similar scenarios, is performed with respect to the number of fading blocks (a.k.a. diversity branches) spanned by each codeword, instead of the number of channel uses per block. This different approach avoids a costly numerical averaging of the error probability over the realizations of the fading process and of its pilot-based estimate at the receiver and results in a significant reduction of the number of channel realizations required to estimate the error probability accurately. Our numerical experiments for both single-antenna communication links and massive multiple-input multiple-output (MIMO) networks show that, when two or more diversity branches are available, the error probability can be estimated accurately with the saddlepoint approximation with respect to the number of fading blocks using a numerical method that requires about two orders of magnitude fewer Monte-Carlo samples than with the saddlepoint approximation with respect to the number of channel uses per block.

The forecasting and computation of the stability of chaotic systems from partial observations are tasks for which traditional equation-based methods may not be suitable. In this computational paper, we propose data-driven methods to (i) infer the dynamics of unobserved (hidden) chaotic variables (full-state reconstruction); (ii) time forecast the evolution of the full state; and (iii) infer the stability properties of the full state. The tasks are performed with long short-term memory (LSTM) networks, which are trained with observations (data) limited to only part of the state: (i) the low-to-high resolution LSTM (LH-LSTM), which takes partial observations as training input, and requires access to the full system state when computing the loss; and (ii) the physics-informed LSTM (PI-LSTM), which is designed to combine partial observations with the integral formulation of the dynamical system's evolution equations. First, we derive the Jacobian of the LSTMs. Second, we analyse a chaotic partial differential equation, the Kuramoto-Sivashinsky (KS), and the Lorenz-96 system. We show that the proposed networks can forecast the hidden variables, both time-accurately and statistically. The Lyapunov exponents and covariant Lyapunov vectors, which characterize the stability of the chaotic attractors, are correctly inferred from partial observations. Third, the PI-LSTM outperforms the LH-LSTM by successfully reconstructing the hidden chaotic dynamics when the input dimension is smaller or similar to the Kaplan-Yorke dimension of the attractor. This work opens new opportunities for reconstructing the full state, inferring hidden variables, and computing the stability of chaotic systems from partial data.

Quantization summarizes continuous distributions by calculating a discrete approximation. Among the widely adopted methods for data quantization is Lloyd's algorithm, which partitions the space into Vorono\"i cells, that can be seen as clusters, and constructs a discrete distribution based on their centroids and probabilistic masses. Lloyd's algorithm estimates the optimal centroids in a minimal expected distance sense, but this approach poses significant challenges in scenarios where data evaluation is costly, and relates to rare events. Then, the single cluster associated to no event takes the majority of the probability mass. In this context, a metamodel is required and adapted sampling methods are necessary to increase the precision of the computations on the rare clusters.

This paper focuses on investigating the density convergence of a fully discrete finite difference method when applied to numerically solve the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noises. The main difficulty lies in the control of the drift coefficient that is neither globally Lipschitz nor one-sided Lipschitz. To handle this difficulty, we propose a novel localization argument and derive the strong convergence rate of the numerical solution to estimate the total variation distance between the exact and numerical solutions. This along with the existence of the density of the numerical solution finally yields the convergence of density in $L^1(\mathbb{R})$ of the numerical solution. Our results partially answer positively to the open problem emerged in [J. Cui and J. Hong, J. Differential Equations (2020)] on computing the density of the exact solution numerically.

A population-averaged additive subdistribution hazards model is proposed to assess the marginal effects of covariates on the cumulative incidence function and to analyze correlated failure time data subject to competing risks. This approach extends the population-averaged additive hazards model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is outlined to estimate the regression coefficients and a new sandwich variance estimator is proposed. The proposed sandwich variance estimator accounts for both the correlations between failure times and between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness-of-fit tests to assess the adequacy of the additive structure of the subdistribution hazards for the overall model and each covariate. Simulation studies are conducted to investigate the performance of the proposed methods in finite samples. We illustrate our methods using data from the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) trial.

Long-span bridges are subjected to a multitude of dynamic excitations during their lifespan. To account for their effects on the structural system, several load models are used during design to simulate the conditions the structure is likely to experience. These models are based on different simplifying assumptions and are generally guided by parameters that are stochastically identified from measurement data, making their outputs inherently uncertain. This paper presents a probabilistic physics-informed machine-learning framework based on Gaussian process regression for reconstructing dynamic forces based on measured deflections, velocities, or accelerations. The model can work with incomplete and contaminated data and offers a natural regularization approach to account for noise in the measurement system. An application of the developed framework is given by an aerodynamic analysis of the Great Belt East Bridge. The aerodynamic response is calculated numerically based on the quasi-steady model, and the underlying forces are reconstructed using sparse and noisy measurements. Results indicate a good agreement between the applied and the predicted dynamic load and can be extended to calculate global responses and the resulting internal forces. Uses of the developed framework include validation of design models and assumptions, as well as prognosis of responses to assist in damage detection and structural health monitoring.

北京阿比特科技有限公司