亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of path planning has been studied for years. Classic planning pipelines, including perception, mapping, and path searching, can result in latency and compounding errors between modules. While recent studies have demonstrated the effectiveness of end-to-end learning methods in achieving high planning efficiency, these methods often struggle to match the generalization abilities of classic approaches in handling different environments. Moreover, end-to-end training of policies often requires a large number of labeled data or training iterations to reach convergence. In this paper, we present a novel Imperative Learning (IL) approach. This approach leverages a differentiable cost map to provide implicit supervision during policy training, eliminating the need for demonstrations or labeled trajectories. Furthermore, the policy training adopts a Bi-Level Optimization (BLO) process, which combines network update and metric-based trajectory optimization, to generate a smooth and collision-free path toward the goal based on a single depth measurement. The proposed method allows task-level costs of predicted trajectories to be backpropagated through all components to update the network through direct gradient descent. In our experiments, the method demonstrates around 4x faster planning than the classic approach and robustness against localization noise. Additionally, the IL approach enables the planner to generalize to various unseen environments, resulting in an overall 26-87% improvement in SPL performance compared to baseline learning methods.

相關內容

Path planning plays a crucial role in various autonomy applications, and RRT* is one of the leading solutions in this field. In this paper, we propose the utilization of vertex-based networks to enhance the sampling process of RRT*, leading to more efficient path planning. Our approach focuses on critical vertices along the optimal paths, which provide essential yet sparser abstractions of the paths. We employ focal loss to address the associated data imbalance issue, and explore different masking configurations to determine practical tradeoffs in system performance. Through experiments conducted on randomly generated floor maps, our solutions demonstrate significant speed improvements, achieving over a 400% enhancement compared to the baseline model.

A robot deployed in a home over long stretches of time faces a true lifelong learning problem. As it seeks to provide assistance to its users, the robot should leverage any accumulated experience to improve its own knowledge to become a more proficient assistant. We formalize this setting with a novel lifelong learning problem formulation in the context of learning for task and motion planning (TAMP). Exploiting the modularity of TAMP systems, we develop a generative mixture model that produces candidate continuous parameters for a planner. Whereas most existing lifelong learning approaches determine a priori how data is shared across task models, our approach learns shared and non-shared models and determines which to use online during planning based on auxiliary tasks that serve as a proxy for each model's understanding of a state. Our method exhibits substantial improvements in planning success on simulated 2D domains and on several problems from the BEHAVIOR benchmark.

We present an algorithm that, given a representation of a road network in lane-level detail, computes a route that minimizes the expected cost to reach a given destination. In doing so, our algorithm allows us to solve for the complex trade-offs encountered when trying to decide not just which roads to follow, but also when to change between the lanes making up these roads, in order to -- for example -- reduce the likelihood of missing a left exit while not unnecessarily driving in the leftmost lane. This routing problem can naturally be formulated as a Markov Decision Process (MDP), in which lane change actions have stochastic outcomes. However, MDPs are known to be time-consuming to solve in general. In this paper, we show that -- under reasonable assumptions -- we can use a Dijkstra-like approach to solve this stochastic problem, and benefit from its efficient $O(n \log n)$ running time. This enables an autonomous vehicle to exhibit lane-selection behavior as it efficiently plans an optimal route to its destination.

Decentralized learning algorithms are an essential tool for designing multi-agent systems, as they enable agents to autonomously learn from their experience and past interactions. In this work, we propose a theoretical and algorithmic framework for real-time identification of the learning dynamics that govern agent behavior using a short burst of a single system trajectory. Our method identifies agent dynamics through polynomial regression, where we compensate for limited data by incorporating side-information constraints that capture fundamental assumptions or expectations about agent behavior. These constraints are enforced computationally using sum-of-squares optimization, leading to a hierarchy of increasingly better approximations of the true agent dynamics. Extensive experiments demonstrated that our approach, using only 5 samples from a short run of a single trajectory, accurately recovers the true dynamics across various benchmarks, including equilibrium selection and prediction of chaotic systems up to 10 Lyapunov times. These findings suggest that our approach has significant potential to support effective policy and decision-making in strategic multi-agent systems.

Robots operating in real-world environments must reason about possible outcomes of stochastic actions and make decisions based on partial observations of the true world state. A major challenge for making accurate and robust action predictions is the problem of confounding, which if left untreated can lead to prediction errors. The partially observable Markov decision process (POMDP) is a widely-used framework to model these stochastic and partially-observable decision-making problems. However, due to a lack of explicit causal semantics, POMDP planning methods are prone to confounding bias and thus in the presence of unobserved confounders may produce underperforming policies. This paper presents a novel causally-informed extension of "anytime regularized determinized sparse partially observable tree" (AR-DESPOT), a modern anytime online POMDP planner, using causal modelling and inference to eliminate errors caused by unmeasured confounder variables. We further propose a method to learn offline the partial parameterisation of the causal model for planning, from ground truth model data. We evaluate our methods on a toy problem with an unobserved confounder and show that the learned causal model is highly accurate, while our planning method is more robust to confounding and produces overall higher performing policies than AR-DESPOT.

Bayesian model comparison (BMC) offers a principled approach for assessing the relative merits of competing computational models and propagating uncertainty into model selection decisions. However, BMC is often intractable for the popular class of hierarchical models due to their high-dimensional nested parameter structure. To address this intractability, we propose a deep learning method for performing BMC on any set of hierarchical models which can be instantiated as probabilistic programs. Since our method enables amortized inference, it allows efficient re-estimation of posterior model probabilities and fast performance validation prior to any real-data application. In a series of extensive validation studies, we benchmark the performance of our method against the state-of-the-art bridge sampling method and demonstrate excellent amortized inference across all BMC settings. We then showcase our method by comparing four hierarchical evidence accumulation models that have previously been deemed intractable for BMC due to partly implicit likelihoods. In this application, we corroborate evidence for the recently proposed L\'evy flight model of decision-making and show how transfer learning can be leveraged to enhance training efficiency. We provide reproducible code for all analyses and an open-source implementation of our method.

Due to the vastly different energy consumption between up-slope and down-slope, a path with the shortest length on a complex off-road terrain environment (2.5D map) is not always the path with the least energy consumption. For any energy-sensitive vehicle, realizing a good trade-off between distance and energy consumption in 2.5D path planning is significantly meaningful. In this paper, we propose a deep reinforcement learning-based 2.5D multi-objective path planning method (DMOP). The DMOP can efficiently find the desired path in three steps: (1) Transform the high-resolution 2.5D map into a small-size map. (2) Use a trained deep Q network (DQN) to find the desired path on the small-size map. (3) Build the planned path to the original high-resolution map using a path-enhanced method. In addition, the hybrid exploration strategy and reward shaping theory are applied to train the DQN. The reward function is constructed with the information of terrain, distance, and border. Simulation results show that the proposed method can finish the multi-objective 2.5D path planning task with significantly high efficiency. With similar planned paths, the speed of the proposed method is more than 100 times faster than that of the A* method and 30 times faster than that of H3DM method. Also, simulation proves that the method has powerful reasoning capability that enables it to perform arbitrary untrained planning tasks.

Public and commercial organizations extensively share cyberthreat intelligence (CTI) to prepare systems to defend against existing and emerging cyberattacks. However, traditional CTI has primarily focused on tracking known threat indicators such as IP addresses and domain names, which may not provide long-term value in defending against evolving attacks. To address this challenge, we propose to use more robust threat intelligence signals called attack patterns. LADDER is a knowledge extraction framework that can extract text-based attack patterns from CTI reports at scale. The framework characterizes attack patterns by capturing the phases of an attack in Android and enterprise networks and systematically maps them to the MITRE ATT\&CK pattern framework. LADDER can be used by security analysts to determine the presence of attack vectors related to existing and emerging threats, enabling them to prepare defenses proactively. We also present several use cases to demonstrate the application of LADDER in real-world scenarios. Finally, we provide a new, open-access benchmark malware dataset to train future cyberthreat intelligence models.

Breakthroughs in machine learning in the last decade have led to `digital intelligence', i.e. machine learning models capable of learning from vast amounts of labeled data to perform several digital tasks such as speech recognition, face recognition, machine translation and so on. The goal of this thesis is to make progress towards designing algorithms capable of `physical intelligence', i.e. building intelligent autonomous navigation agents capable of learning to perform complex navigation tasks in the physical world involving visual perception, natural language understanding, reasoning, planning, and sequential decision making. Despite several advances in classical navigation methods in the last few decades, current navigation agents struggle at long-term semantic navigation tasks. In the first part of the thesis, we discuss our work on short-term navigation using end-to-end reinforcement learning to tackle challenges such as obstacle avoidance, semantic perception, language grounding, and reasoning. In the second part, we present a new class of navigation methods based on modular learning and structured explicit map representations, which leverage the strengths of both classical and end-to-end learning methods, to tackle long-term navigation tasks. We show that these methods are able to effectively tackle challenges such as localization, mapping, long-term planning, exploration and learning semantic priors. These modular learning methods are capable of long-term spatial and semantic understanding and achieve state-of-the-art results on various navigation tasks.

Video anomaly detection under weak labels is formulated as a typical multiple-instance learning problem in previous works. In this paper, we provide a new perspective, i.e., a supervised learning task under noisy labels. In such a viewpoint, as long as cleaning away label noise, we can directly apply fully supervised action classifiers to weakly supervised anomaly detection, and take maximum advantage of these well-developed classifiers. For this purpose, we devise a graph convolutional network to correct noisy labels. Based upon feature similarity and temporal consistency, our network propagates supervisory signals from high-confidence snippets to low-confidence ones. In this manner, the network is capable of providing cleaned supervision for action classifiers. During the test phase, we only need to obtain snippet-wise predictions from the action classifier without any extra post-processing. Extensive experiments on 3 datasets at different scales with 2 types of action classifiers demonstrate the efficacy of our method. Remarkably, we obtain the frame-level AUC score of 82.12% on UCF-Crime.

北京阿比特科技有限公司