Cross-Domain Recommendation (CDR) seeks to enable effective knowledge transfer across domains. Existing works rely on either representation alignment or transformation bridges, but they struggle on identifying domain-shared from domain-specific latent factors. Specifically, while CDR describes user representations as a joint distribution over two domains, these methods fail to account for its joint identifiability as they primarily fixate on the marginal distribution within a particular domain. Such a failure may overlook the conditionality between two domains and how it contributes to latent factor disentanglement, leading to negative transfer when domains are weakly correlated. In this study, we explore what should and should not be transferred in cross-domain user representations from a causality perspective. We propose a Hierarchical subspace disentanglement approach to explore the Joint IDentifiability of cross-domain joint distribution, termed HJID, to preserve domain-specific behaviors from domain-shared factors. HJID organizes user representations into layers: generic shallow subspaces and domain-oriented deep subspaces. We first encode the generic pattern in the shallow subspace by minimizing the Maximum Mean Discrepancy of initial layer activation. Then, to dissect how domain-oriented latent factors are encoded in deeper layers activation, we construct a cross-domain causality-based data generation graph, which identifies cross-domain consistent and domain-specific components, adhering to the Minimal Change principle. This allows HJID to maintain stability whilst discovering unique factors for different domains, all within a generative framework of invertible transformations that guarantee the joint identifiability. With experiments on real-world datasets, we show that HJID outperforms SOTA methods on a range of strongly and weakly correlated CDR tasks.
Advances towards more faithful and traceable answers of Large Language Models (LLMs) are crucial for various research and practical endeavors. One avenue in reaching this goal is basing the answers on reliable sources. However, this Evidence-Based QA has proven to work insufficiently with LLMs in terms of citing the correct sources (source quality) and truthfully representing the information within sources (answer attributability). In this work, we systematically investigate how to robustly fine-tune LLMs for better source quality and answer attributability. Specifically, we introduce a data generation pipeline with automated data quality filters, which can synthesize diversified high-quality training and testing data at scale. We further introduce four test sets to benchmark the robustness of fine-tuned specialist models. Extensive evaluation shows that fine-tuning on synthetic data improves performance on both in- and out-of-distribution. Furthermore, we show that data quality, which can be drastically improved by proposed quality filters, matters more than quantity in improving Evidence-Based QA.
State Machine Replication (SMR) protocols form the backbone of many distributed systems. Enterprises and startups increasingly build their distributed systems on the cloud due to its many advantages, such as scalability and cost-effectiveness. One of the first technical questions companies face when building a system on the cloud is which programming language to use. Among many factors that go into this decision is whether to use a language with garbage collection (GC), such as Java or Go, or a language with manual memory management, such as C++ or Rust. Today, companies predominantly prefer languages with GC, like Go, Kotlin, or even Python, due to ease of development; however, there is no free lunch: GC costs resources (memory and CPU) and performance (long tail latencies due to GC pauses). While there have been anecdotal reports of reduced cloud cost and improved tail latencies when switching from a language with GC to a language with manual memory management, so far, there has not been a systematic study of the GC overhead of running an SMR-based cloud system. This paper studies the overhead of running an SMR-based cloud system written in a language with GC. To this end, we design from scratch a canonical SMR system -- a MultiPaxos-based replicated in-memory key-value store -- and we implement it in C++, Java, Rust, and Go. We compare the performance and resource usage of these implementations when running on the cloud under different workloads and resource constraints and report our results. Our findings have implications for the design of cloud systems.
Large Language Models (LLMs) have demonstrated exceptional proficiency in language-related tasks. However, their deployment presents significant challenges due to their substantial memory and storage requirements. To address this challenge, weight-only quantization has emerged as a promising solution. Previous research has indicated that fine-tuning through up and down rounding can enhance performance. In this study, we introduce SignRound, a method that utilizes signed gradient descent (SignSGD) to optimize rounding values and weight clipping within just 200 steps, combining the strengths of both Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ). SignRound achieves outstanding results compared to recent methods across 2 to 4 bits, while maintaining low tuning costs and without introducing any additional inference overhead. For instance, SignRound led to absolute average accuracy improvements ranging from 6.91\% to 33.22\% at 2 bits. Furthermore, it demonstrates robust generalization to various recent models and achieves near-lossless quantization in most scenarios at 4 bits. The source code is publicly available at \url{//github.com/intel/auto-round}.
We investigate the learning of implicit neural representation (INR) using an overparameterized multilayer perceptron (MLP) via a novel nonparametric teaching perspective. The latter offers an efficient example selection framework for teaching nonparametrically defined (viz. non-closed-form) target functions, such as image functions defined by 2D grids of pixels. To address the costly training of INRs, we propose a paradigm called Implicit Neural Teaching (INT) that treats INR learning as a nonparametric teaching problem, where the given signal being fitted serves as the target function. The teacher then selects signal fragments for iterative training of the MLP to achieve fast convergence. By establishing a connection between MLP evolution through parameter-based gradient descent and that of function evolution through functional gradient descent in nonparametric teaching, we show for the first time that teaching an overparameterized MLP is consistent with teaching a nonparametric learner. This new discovery readily permits a convenient drop-in of nonparametric teaching algorithms to broadly enhance INR training efficiency, demonstrating 30%+ training time savings across various input modalities.
Large language models (LLMs) often exhibit undesirable behaviours, such as generating untruthful or biased content. Editing their internal representations has been shown to be effective in mitigating such behaviours on top of the existing alignment methods. We propose a novel inference-time editing method, namely spectral editing of activations (SEA), to project the input representations into directions with maximal covariance with the positive demonstrations (e.g., truthful) while minimising covariance with the negative demonstrations (e.g., hallucinated). We also extend our method to non-linear editing using feature functions. We run extensive experiments on benchmarks concerning truthfulness and bias with six open-source LLMs of different sizes and model families. The results demonstrate the superiority of SEA in effectiveness, generalisation to similar tasks, as well as inference and data efficiency. We also show that SEA editing only has a limited negative impact on other model capabilities.
Online Continual Learning (OCL) empowers machine learning models to acquire new knowledge online across a sequence of tasks. However, OCL faces a significant challenge: catastrophic forgetting, wherein the model learned in previous tasks is substantially overwritten upon encountering new tasks, leading to a biased forgetting of prior knowledge. Moreover, the continual doman drift in sequential learning tasks may entail the gradual displacement of the decision boundaries in the learned feature space, rendering the learned knowledge susceptible to forgetting. To address the above problem, in this paper, we propose a novel rehearsal strategy, termed Drift-Reducing Rehearsal (DRR), to anchor the domain of old tasks and reduce the negative transfer effects. First, we propose to select memory for more representative samples guided by constructed centroids in a data stream. Then, to keep the model from domain chaos in drifting, a two-level angular cross-task Contrastive Margin Loss (CML) is proposed, to encourage the intra-class and intra-task compactness, and increase the inter-class and inter-task discrepancy. Finally, to further suppress the continual domain drift, we present an optional Centorid Distillation Loss (CDL) on the rehearsal memory to anchor the knowledge in feature space for each previous old task. Extensive experimental results on four benchmark datasets validate that the proposed DRR can effectively mitigate the continual domain drift and achieve the state-of-the-art (SOTA) performance in OCL.
The existing methods for Reconfigurable Intelligent Surface (RIS) beamforming in wireless communication are typically limited to uniform phase quantization. However, in real world applications, the phase and bit resolution of RIS units are often non-uniform due to practical requirements and engineering challenges. To fill this research gap, we formulate an optimization problem for discrete non-uniform phase configuration in RIS assisted multiple-input single-output (MISO) communications. Subsequently, a partition-and-traversal (PAT) algorithm is proposed to solve that, achieving the global optimal solution. The efficacy and superiority of the PAT algorithm are validated through numerical simulations, and the impact of non-uniform phase quantization on system performance is analyzed.
When learning tasks over time, artificial neural networks suffer from a problem known as Catastrophic Forgetting (CF). This happens when the weights of a network are overwritten during the training of a new task causing forgetting of old information. To address this issue, we propose MetA Reusable Knowledge or MARK, a new method that fosters weight reusability instead of overwriting when learning a new task. Specifically, MARK keeps a set of shared weights among tasks. We envision these shared weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but also enriched with new knowledge as the model learns new tasks. Key components behind MARK are two-fold. On the one hand, a metalearning approach provides the key mechanism to incrementally enrich the KB with new knowledge and to foster weight reusability among tasks. On the other hand, a set of trainable masks provides the key mechanism to selectively choose from the KB relevant weights to solve each task. By using MARK, we achieve state of the art results in several popular benchmarks, surpassing the best performing methods in terms of average accuracy by over 10% on the 20-Split-MiniImageNet dataset, while achieving almost zero forgetfulness using 55% of the number of parameters. Furthermore, an ablation study provides evidence that, indeed, MARK is learning reusable knowledge that is selectively used by each task.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.