Coded distributed computing (CDC) introduced by Li \emph{et al.} can greatly reduce the communication load for MapReduce computing systems. In the general cascaded CDC with $K$ workers, $N$ input files and $Q$ Reduce functions, each input file will be mapped by $r$ workers and each Reduce function will be computed by $s$ workers such that coding techniques can be applied to achieve the maximum multicast gain. The main drawback of most existing CDC schemes is that they require the original data to be split into a large number of input files that grows exponentially with $K$, which can significantly increase the coding complexity and degrade system performance. In this paper, we first use a classic combinatorial structure $t$-design, for any integer $t\geq 2$, to develop a low-complexity and asymptotically optimal CDC with $r=s$. The main advantages of our scheme via $t$-design are two-fold: 1) having much smaller $N$ and $Q$ than the existing schemes under the same parameters $K$, $r$ and $s$; and 2) achieving smaller communication loads compared with the state-of-the-art schemes. Remarkably, unlike the previous schemes that realize on large operation fields, our scheme operates on the minimum binary field $\mathbb{F}_2$. Furthermore, we show that our construction method can incorporate the other combinatorial structures that have a similar property to $t$-design. For instance, we use $t$-GDD to obtain another asymptotically optimal CDC scheme over $\mathbb{F}_2$ that has different parameters from $t$-design. Finally, we show that our construction method can also be used to construct CDC schemes with $r\neq s$ that have small file number and Reduce function number.
In contrast to the natural capabilities of humans to learn new tasks in a sequential fashion, neural networks are known to suffer from catastrophic forgetting, where the model's performances on old tasks drop dramatically after being optimized for a new task. Since then, the continual learning (CL) community has proposed several solutions aiming to equip the neural network with the ability to learn the current task (plasticity) while still achieving high accuracy on the previous tasks (stability). Despite remarkable improvements, the plasticity-stability trade-off is still far from being solved and its underlying mechanism is poorly understood. In this work, we propose Auxiliary Network Continual Learning (ANCL), a novel method that applies an additional auxiliary network which promotes plasticity to the continually learned model which mainly focuses on stability. More concretely, the proposed framework materializes in a regularizer that naturally interpolates between plasticity and stability, surpassing strong baselines on task incremental and class incremental scenarios. Through extensive analyses on ANCL solutions, we identify some essential principles beneath the stability-plasticity trade-off.
As control engineering methods are applied to increasingly complex systems, data-driven approaches for system identification appear as a promising alternative to physics-based modeling. While many of these approaches rely on the availability of state measurements, the states of a complex system are often not directly measurable. It may then be necessary to jointly estimate the dynamics and a latent state, making it considerably more challenging to design controllers with performance guarantees. This paper proposes a novel method for the computation of an optimal input trajectory for unknown nonlinear systems with latent states. Probabilistic performance guarantees are derived for the resulting input trajectory, and an approach to validate the performance of arbitrary control laws is presented. The effectiveness of the proposed method is demonstrated in a numerical simulation.
Sound correspondence patterns form the basis of cognate detection and phonological reconstruction in historical language comparison. Methods for the automatic inference of correspondence patterns from phonetically aligned cognate sets have been proposed, but their application to multilingual wordlists requires extremely well annotated datasets. Since annotation is tedious and time consuming, it would be desirable to find ways to improve aligned cognate data automatically. Taking inspiration from trimming techniques in evolutionary biology, which improve alignments by excluding problematic sites, we propose a workflow that trims phonetic alignments in comparative linguistics prior to the inference of correspondence patterns. Testing these techniques on a large standardized collection of ten datasets with expert annotations from different language families, we find that the best trimming technique substantially improves the overall consistency of the alignments. The results show a clear increase in the proportion of frequent correspondence patterns and words exhibiting regular cognate relations.
Most of the metrics used for detecting a causal relationship among multiple time series ignore the effects of practical measurement impairments, such as finite sample effects, undersampling and measurement noise. It has been shown that these effects significantly impair the performance of the underlying causality test. In this paper, we consider the problem of sequentially detecting the causal relationship between two time series while accounting for these measurement impairments. In this context, we first formulate the problem of Granger causality detection as a binary hypothesis test using the norm of the estimates of the vector auto-regressive~(VAR) coefficients of the two time series as the test statistic. Following this, we investigate sequential estimation of these coefficients and formulate a sequential test for detecting the causal relationship between two time series. Finally via detailed simulations, we validate our derived results, and evaluate the performance of the proposed causality detectors.
This paper addresses the challenge of generating optimal vehicle flow at the macroscopic level. Although several studies have focused on optimizing vehicle flow, little attention has been given to ensuring it can be practically achieved. To overcome this issue, we propose a route-recovery and eco-driving strategy for connected and automated vehicles (CAVs) that guarantees optimal flow generation. Our approach involves identifying the optimal vehicle flow that minimizes total travel time, given the constant travel demands in urban areas. We then develop a heuristic route-recovery algorithm to assign routes to CAVs that satisfy all travel demands while maintaining the optimal flow. Our method lets CAVs arrive at each road segment at their desired arrival time based on their assigned route and desired flow. In addition, we present an efficient coordination framework to minimize the energy consumption of CAVs and prevent collisions while crossing intersections. The proposed method can effectively generate optimal vehicle flow and potentially reduce travel time and energy consumption in urban areas.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.