This paper examines how individuals perceive the credibility of content originating from human authors versus content generated by large language models, like the GPT language model family that powers ChatGPT, in different user interface versions. Surprisingly, our results demonstrate that regardless of the user interface presentation, participants tend to attribute similar levels of credibility. While participants also do not report any different perceptions of competence and trustworthiness between human and AI-generated content, they rate AI-generated content as being clearer and more engaging. The findings from this study serve as a call for a more discerning approach to evaluating information sources, encouraging users to exercise caution and critical thinking when engaging with content generated by AI systems.
This paper primarily focuses on evaluating and benchmarking the robustness of visual representations in the context of object assembly tasks. Specifically, it investigates the alignment and insertion of objects with geometrical extrusions and intrusions, commonly referred to as a peg-in-hole task. The accuracy required to detect and orient the peg and the hole geometry in SE(3) space for successful assembly poses significant challenges. Addressing this, we employ a general framework in visuomotor policy learning that utilizes visual pretraining models as vision encoders. Our study investigates the robustness of this framework when applied to a dual-arm manipulation setup, specifically to the grasp variations. Our quantitative analysis shows that existing pretrained models fail to capture the essential visual features necessary for this task. However, a visual encoder trained from scratch consistently outperforms the frozen pretrained models. Moreover, we discuss rotation representations and associated loss functions that substantially improve policy learning. We present a novel task scenario designed to evaluate the progress in visuomotor policy learning, with a specific focus on improving the robustness of intricate assembly tasks that require both geometrical and spatial reasoning. Videos, additional experiments, dataset, and code are available at //bit.ly/geometric-peg-in-hole .
This letter proposes a scheme assisted by a reconfigurable intelligent surface (RIS) for efficient uplink traffic multiplexing between enhanced mobile broadband (eMBB) and ultra-reliable-low-latency communication (URLLC). The scheme determines two RIS configurations based only on the eMBB channel state information (CSI) available at the base station (BS). The first optimizes eMBB quality of service, while the second reduces eMBB interference in URLLC traffic by temporarily silencing the eMBB traffic. Numerical results demonstrate that this approach, relying solely on eMBB CSI and without BS coordination, can outperform the state-of-the-art preemptive puncturing by 4.9 times in terms of URLLC outage probability.
This paper presents a novel approach to address the challenge of online hidden representation learning for decision-making under uncertainty in non-stationary, partially observable environments. The proposed algorithm, Distributed Hebbian Temporal Memory (DHTM), is based on factor graph formalism and a multicomponent neuron model. DHTM aims to capture sequential data relationships and make cumulative predictions about future observations, forming Successor Representation (SR). Inspired by neurophysiological models of the neocortex, the algorithm utilizes distributed representations, sparse transition matrices, and local Hebbian-like learning rules to overcome the instability and slow learning process of traditional temporal memory algorithms like RNN and HMM. Experimental results demonstrate that DHTM outperforms classical LSTM and performs comparably to more advanced RNN-like algorithms, speeding up Temporal Difference learning for SR in changing environments. Additionally, we compare the SRs produced by DHTM to another biologically inspired HMM-like algorithm, CSCG. Our findings suggest that DHTM is a promising approach for addressing the challenges of online hidden representation learning in dynamic environments.
This paper provides norm-based generalization bounds for the Transformer architecture that do not depend on the input sequence length. We employ a covering number based approach to prove our bounds. We use three novel covering number bounds for the function class of bounded linear transformations to upper bound the Rademacher complexity of the Transformer. Furthermore, we show this generalization bound applies to the common Transformer training technique of masking and then predicting the masked word. We also run a simulated study on a sparse majority data set that empirically validates our theoretical findings.
In the pursuit of efficient automated content creation, procedural generation, leveraging modifiable parameters and rule-based systems, emerges as a promising approach. Nonetheless, it could be a demanding endeavor, given its intricate nature necessitating a deep understanding of rules, algorithms, and parameters. To reduce workload, we introduce 3D-GPT, a framework utilizing large language models~(LLMs) for instruction-driven 3D modeling. 3D-GPT positions LLMs as proficient problem solvers, dissecting the procedural 3D modeling tasks into accessible segments and appointing the apt agent for each task. 3D-GPT integrates three core agents: the task dispatch agent, the conceptualization agent, and the modeling agent. They collaboratively achieve two objectives. First, it enhances concise initial scene descriptions, evolving them into detailed forms while dynamically adapting the text based on subsequent instructions. Second, it integrates procedural generation, extracting parameter values from enriched text to effortlessly interface with 3D software for asset creation. Our empirical investigations confirm that 3D-GPT not only interprets and executes instructions, delivering reliable results but also collaborates effectively with human designers. Furthermore, it seamlessly integrates with Blender, unlocking expanded manipulation possibilities. Our work highlights the potential of LLMs in 3D modeling, offering a basic framework for future advancements in scene generation and animation.
Wikipedia, the Web's largest encyclopedia, frequently faces content disputes or malicious users seeking to subvert its integrity. Administrators can mitigate such disruptions by enforcing "page protection" that selectively limits contributions to specific articles to help prevent the degradation of content. However, this practice contradicts one of Wikipedia's fundamental principles$-$that it is open to all contributors$-$and may hinder further improvement of the encyclopedia. In this paper, we examine the effect of page protection on article quality to better understand whether and when page protections are warranted. Using decade-long data on page protections from the English Wikipedia, we conduct a quasi-experimental study analyzing pages that received "requests for page protection"$-$written appeals submitted by Wikipedia editors to administrators to impose page protections. We match pages that indeed received page protection with similar pages that did not and quantify the causal effect of the interventions on a well-established measure of article quality. Our findings indicate that the effect of page protection on article quality depends on the characteristics of the page prior to the intervention: high-quality articles are affected positively as opposed to low-quality articles that are impacted negatively. Subsequent analysis suggests that high-quality articles degrade when left unprotected, whereas low-quality articles improve. Overall, with our study, we outline page protections on Wikipedia and inform best practices on whether and when to protect an article.
This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.
In this paper, we identify a cultural dominance issue within large language models (LLMs) due to the predominant use of English data in model training (e.g. ChatGPT). LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages. To systematically evaluate the cultural dominance issue, we build a benchmark that consists of both concrete (e.g. holidays and songs) and abstract (e.g. values and opinions) cultural objects. Empirical results show that the representative GPT models suffer from the culture dominance problem, where GPT-4 is the most affected while text-davinci-003 suffers the least from this problem. Our study emphasizes the need for critical examination of cultural dominance and ethical consideration in their development and deployment. We show two straightforward methods in model development (i.e. pretraining on more diverse data) and deployment (e.g. culture-aware prompting) can significantly mitigate the cultural dominance issue in LLMs.
The assignment of papers to reviewers is a crucial part of the peer review processes of large publication venues, where organizers (e.g., conference program chairs) rely on algorithms to perform automated paper assignment. As such, a major challenge for the organizers of these processes is to specify paper assignment algorithms that find appropriate assignments with respect to various desiderata. Although the main objective when choosing a good paper assignment is to maximize the expertise of each reviewer for their assigned papers, several other considerations make introducing randomization into the paper assignment desirable: robustness to malicious behavior, the ability to evaluate alternative paper assignments, reviewer diversity, and reviewer anonymity. However, it is unclear in what way one should randomize the paper assignment in order to best satisfy all of these considerations simultaneously. In this work, we present a practical, one-size-fits-all method for randomized paper assignment intended to perform well across different motivations for randomness. We show theoretically and experimentally that our method outperforms currently-deployed methods for randomized paper assignment on several intuitive randomness metrics, demonstrating that the randomized assignments produced by our method are general-purpose.
We initiate a novel approach to explain the out of sample performance of random forest (RF) models by exploiting the fact that any RF can be formulated as an adaptive weighted K nearest-neighbors model. Specifically, we use the proximity between points in the feature space learned by the RF to re-write random forest predictions exactly as a weighted average of the target labels of training data points. This linearity facilitates a local notion of explainability of RF predictions that generates attributions for any model prediction across observations in the training set, and thereby complements established methods like SHAP, which instead generates attributions for a model prediction across dimensions of the feature space. We demonstrate this approach in the context of a bond pricing model trained on US corporate bond trades, and compare our approach to various existing approaches to model explainability.