In this paper, we identify a cultural dominance issue within large language models (LLMs) due to the predominant use of English data in model training (e.g. ChatGPT). LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages. To systematically evaluate the cultural dominance issue, we build a benchmark that consists of both concrete (e.g. holidays and songs) and abstract (e.g. values and opinions) cultural objects. Empirical results show that the representative GPT models suffer from the culture dominance problem, where GPT-4 is the most affected while text-davinci-003 suffers the least from this problem. Our study emphasizes the need for critical examination of cultural dominance and ethical consideration in their development and deployment. We show two straightforward methods in model development (i.e. pretraining on more diverse data) and deployment (e.g. culture-aware prompting) can significantly mitigate the cultural dominance issue in LLMs.
Natural Language to SQL systems (NL-to-SQL) have recently shown a significant increase in accuracy for natural language to SQL query translation. This improvement is due to the emergence of transformer-based language models, and the popularity of the Spider benchmark - the de-facto standard for evaluating NL-to-SQL systems. The top NL-to-SQL systems reach accuracies of up to 85\%. However, Spider mainly contains simple databases with few tables, columns, and entries, which does not reflect a realistic setting. Moreover, complex real-world databases with domain-specific content have little to no training data available in the form of NL/SQL-pairs leading to poor performance of existing NL-to-SQL systems. In this paper, we introduce ScienceBenchmark, a new complex NL-to-SQL benchmark for three real-world, highly domain-specific databases. For this new benchmark, SQL experts and domain experts created high-quality NL/SQL-pairs for each domain. To garner more data, we extended the small amount of human-generated data with synthetic data generated using GPT-3. We show that our benchmark is highly challenging, as the top performing systems on Spider achieve a very low performance on our benchmark. Thus, the challenge is many-fold: creating NL-to-SQL systems for highly complex domains with a small amount of hand-made training data augmented with synthetic data. To our knowledge, ScienceBenchmark is the first NL-to-SQL benchmark designed with complex real-world scientific databases, containing challenging training and test data carefully validated by domain experts.
The potential of using a large language model (LLM) as a knowledge base (KB) has sparked significant interest. To manage the knowledge acquired by LLMs, we need to ensure that the editing of learned facts respects internal logical constraints, which are known as dependency of knowledge. Existing work on editing LLMs has partially addressed the issue of dependency, when the editing of a fact should apply to its lexical variations without disrupting irrelevant ones. However, they neglect the dependency between a fact and its logical implications. We propose an evaluation protocol with an accompanying question-answering dataset, DepEdit, that provides a comprehensive assessment of the editing process considering the above notions of dependency. Our protocol involves setting up a controlled environment in which we edit facts and monitor their impact on LLMs, along with their implications based on If-Then rules. Extensive experiments on DepEdit show that existing knowledge editing methods are sensitive to the surface form of knowledge, and that they have limited performance in inferring the implications of edited facts.
In this paper we investigate the use of reinforcement-learning based prediction approaches for a real drinking-water treatment plant. Developing such a prediction system is a critical step on the path to optimizing and automating water treatment. Before that, there are many questions to answer about the predictability of the data, suitable neural network architectures, how to overcome partial observability and more. We first describe this dataset, and highlight challenges with seasonality, nonstationarity, partial observability, and heterogeneity across sensors and operation modes of the plant. We then describe General Value Function (GVF) predictions -- discounted cumulative sums of observations -- and highlight why they might be preferable to classical n-step predictions common in time series prediction. We discuss how to use offline data to appropriately pre-train our temporal difference learning (TD) agents that learn these GVF predictions, including how to select hyperparameters for online fine-tuning in deployment. We find that the TD-prediction agent obtains an overall lower normalized mean-squared error than the n-step prediction agent. Finally, we show the importance of learning in deployment, by comparing a TD agent trained purely offline with no online updating to a TD agent that learns online. This final result is one of the first to motivate the importance of adapting predictions in real-time, for non-stationary high-volume systems in the real world.
In this paper, we aim to design and analyze distributed Bayesian estimation algorithms for sensor networks. The challenges we address are to (i) derive a distributed provably-correct algorithm in the functional space of probability distributions over continuous variables, and (ii) leverage these results to obtain new distributed estimators restricted to subsets of variables observed by individual agents. This relates to applications such as cooperative localization and federated learning, where the data collected at any agent depends on a subset of all variables of interest. We present Bayesian density estimation algorithms using data from non-linear likelihoods at agents in centralized, distributed, and marginal distributed settings. After setting up a distributed estimation objective, we prove almost-sure convergence to the optimal set of pdfs at each agent. Then, we prove the same for a storage-aware algorithm estimating densities only over relevant variables at each agent. Finally, we present a Gaussian version of these algorithms and implement it in a mapping problem using variational inference to handle non-linear likelihood models associated with LiDAR sensing.
Generative artificial intelligence (GenAI), exemplified by ChatGPT, Midjourney, and other state-of-the-art large language models and diffusion models, holds significant potential for transforming education and enhancing human productivity. While the prevalence of GenAI in education has motivated numerous research initiatives, integrating these technologies within the learning analytics (LA) cycle and their implications for practical interventions remain underexplored. This paper delves into the prospective opportunities and challenges GenAI poses for advancing LA. We present a concise overview of the current GenAI landscape and contextualise its potential roles within Clow's generic framework of the LA cycle. We posit that GenAI can play pivotal roles in analysing unstructured data, generating synthetic learner data, enriching multimodal learner interactions, advancing interactive and explanatory analytics, and facilitating personalisation and adaptive interventions. As the lines blur between learners and GenAI tools, a renewed understanding of learners is needed. Future research can delve deep into frameworks and methodologies that advocate for human-AI collaboration. The LA community can play a pivotal role in capturing data about human and AI contributions and exploring how they can collaborate most effectively. As LA advances, it is essential to consider the pedagogical implications and broader socioeconomic impact of GenAI for ensuring an inclusive future.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
A sememe is defined as the minimum semantic unit of human languages. Sememe knowledge bases (KBs), which contain words annotated with sememes, have been successfully applied to many NLP tasks. However, existing sememe KBs are built on only a few languages, which hinders their widespread utilization. To address the issue, we propose to build a unified sememe KB for multiple languages based on BabelNet, a multilingual encyclopedic dictionary. We first build a dataset serving as the seed of the multilingual sememe KB. It manually annotates sememes for over $15$ thousand synsets (the entries of BabelNet). Then, we present a novel task of automatic sememe prediction for synsets, aiming to expand the seed dataset into a usable KB. We also propose two simple and effective models, which exploit different information of synsets. Finally, we conduct quantitative and qualitative analyses to explore important factors and difficulties in the task. All the source code and data of this work can be obtained on //github.com/thunlp/BabelNet-Sememe-Prediction.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.