亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Two-dimensional (2D) freehand ultrasonography is one of the most commonly used medical imaging modalities, particularly in obstetrics and gynaecology. However, it only captures 2D cross-sectional views of inherently 3D anatomies, losing valuable contextual information. As an alternative to requiring costly and complex 3D ultrasound scanners, 3D volumes can be constructed from 2D scans using machine learning. However this usually requires long computational time. Here, we propose RapidVol: a neural representation framework to speed up slice-to-volume ultrasound reconstruction. We use tensor-rank decomposition, to decompose the typical 3D volume into sets of tri-planes, and store those instead, as well as a small neural network. A set of 2D ultrasound scans, with their ground truth (or estimated) 3D position and orientation (pose) is all that is required to form a complete 3D reconstruction. Reconstructions are formed from real fetal brain scans, and then evaluated by requesting novel cross-sectional views. When compared to prior approaches based on fully implicit representation (e.g. neural radiance fields), our method is over 3x quicker, 46% more accurate, and if given inaccurate poses is more robust. Further speed-up is also possible by reconstructing from a structural prior rather than from scratch.

相關內容

3D是(shi)英文“Three Dimensions”的(de)簡稱,中(zhong)文是(shi)指三維(wei)、三個(ge)維(wei)度、三個(ge)坐標(biao),即有(you)(you)長、有(you)(you)寬、有(you)(you)高,換句(ju)話說,就是(shi)立體(ti)的(de),是(shi)相對于只有(you)(you)長和寬的(de)平(ping)面(2D)而言。

Cooperative driving, enabled by communication between automated vehicle systems, promises significant benefits to fuel efficiency, road capacity, and safety over single-vehicle driver assistance systems such as adaptive cruise control (ACC). However, the responsible development and implementation of these algorithms poses substantial challenges due to the need for extensive real-world testing. We address this issue and introduce OpenConvoy, an open and extensible framework designed for the implementation and assessment of cooperative driving policies on physical connected and autonomous vehicles (CAVs). We demonstrate the capabilities of OpenConvoy through a series of experiments on a convoy of multi-scale vehicles controlled by Platooning to show the stability of our system across vehicle configurations and its ability to effectively measure convoy cohesion across driving scenarios including varying degrees of communication loss.

We introduce the use of harmonic analysis to decompose the state space of symmetric robotic systems into orthogonal isotypic subspaces. These are lower-dimensional spaces that capture distinct, symmetric, and synergistic motions. For linear dynamics, we characterize how this decomposition leads to a subdivision of the dynamics into independent linear systems on each subspace, a property we term dynamics harmonic analysis (DHA). To exploit this property, we use Koopman operator theory to propose an equivariant deep-learning architecture that leverages the properties of DHA to learn a global linear model of the system dynamics. Our architecture, validated on synthetic systems and the dynamics of locomotion of a quadrupedal robot, exhibits enhanced generalization, sample efficiency, and interpretability, with fewer trainable parameters and computational costs.

Two-sample network hypothesis testing is an important inference task with applications across diverse fields such as medicine, neuroscience, and sociology. Many of these testing methodologies operate under the implicit assumption that the vertex correspondence across networks is a priori known. This assumption is often untrue, and the power of the subsequent test can degrade when there are misaligned/label-shuffled vertices across networks. This power loss due to shuffling is theoretically explored in the context of random dot product and stochastic block model networks for a pair of hypothesis tests based on Frobenius norm differences between estimated edge probability matrices or between adjacency matrices. The loss in testing power is further reinforced by numerous simulations and experiments, both in the stochastic block model and in the random dot product graph model, where the power loss across multiple recently proposed tests in the literature is considered. Lastly, the impact that shuffling can have in real-data testing is demonstrated in a pair of examples from neuroscience and from social network analysis.

Finding the root causes of anomalies in cloud computing systems quickly is crucial to ensure availability and efficiency since accurate root causes can guide engineers to take appropriate actions to address the anomalies and maintain customer satisfaction. However, it is difficult to investigate and identify the root causes based on large-scale and high-dimension monitoring data collected from complex cloud computing environments. Due to the inherently dynamic characteristics of cloud computing systems, the existing approaches in practice largely rely on manual analyses for flexibility and reliability, but massive unpredictable factors and high data complexity make the process time-consuming. Despite recent advances in automated detection and investigation approaches, the speed and quality of root cause analyses remain limited by the lack of expert involvement in these approaches. The limitations found in the current solutions motivate us to propose a visual analytics approach that facilitates the interactive investigation of the anomaly root causes in cloud computing systems. We identified three challenges, namely, a) modeling databases for the root cause investigation, b) inferring root causes from large-scale time series, and c) building comprehensible investigation results. In collaboration with domain experts, we addressed these challenges with RCInvestigator, a novel visual analytics system that establishes a tight collaboration between human and machine and assists experts in investigating the root causes of cloud computing system anomalies. We evaluated the effectiveness of RCInvestigator through two use cases based on real-world data and received positive feedback from experts.

Constraint-based causal discovery methods leverage conditional independence tests to infer causal relationships in a wide variety of applications. Just as the majority of machine learning methods, existing work focuses on studying $\textit{independent and identically distributed}$ data. However, it is known that even with infinite i.i.d.$\ $ data, constraint-based methods can only identify causal structures up to broad Markov equivalence classes, posing a fundamental limitation for causal discovery. In this work, we observe that exchangeable data contains richer conditional independence structure than i.i.d.$\ $ data, and show how the richer structure can be leveraged for causal discovery. We first present causal de Finetti theorems, which state that exchangeable distributions with certain non-trivial conditional independences can always be represented as $\textit{independent causal mechanism (ICM)}$ generative processes. We then present our main identifiability theorem, which shows that given data from an ICM generative process, its unique causal structure can be identified through performing conditional independence tests. We finally develop a causal discovery algorithm and demonstrate its applicability to inferring causal relationships from multi-environment data. Our code and models are publicly available at: //github.com/syguo96/Causal-de-Finetti

The secondary structure of ribonucleic acid (RNA) is more stable and accessible in the cell than its tertiary structure, making it essential for functional prediction. Although deep learning has shown promising results in this field, current methods suffer from poor generalization and high complexity. In this work, we reformulate the RNA secondary structure prediction as a K-Rook problem, thereby simplifying the prediction process into probabilistic matching within a finite solution space. Building on this innovative perspective, we introduce RFold, a simple yet effective method that learns to predict the most matching K-Rook solution from the given sequence. RFold employs a bi-dimensional optimization strategy that decomposes the probabilistic matching problem into row-wise and column-wise components to reduce the matching complexity, simplifying the solving process while guaranteeing the validity of the output. Extensive experiments demonstrate that RFold achieves competitive performance and about eight times faster inference efficiency than the state-of-the-art approaches. The code and Colab demo are available in \href{//github.com/A4Bio/RFold}{//github.com/A4Bio/RFold}.

Large language models (LLMs) have emerged as pivotal contributors in contemporary natural language processing and are increasingly being applied across a diverse range of industries. However, these large-scale probabilistic statistical models cannot currently ensure the requisite quality in professional content generation. These models often produce hallucinated text, compromising their practical utility in professional contexts. To assess the authentic reliability of LLMs in text generation, numerous initiatives have developed benchmark evaluations for hallucination phenomena. Nevertheless, these benchmarks frequently utilize constrained generation techniques due to cost and temporal constraints. These techniques encompass the use of directed hallucination induction and strategies that deliberately alter authentic text to produce hallucinations. These approaches are not congruent with the unrestricted text generation demanded by real-world applications. Furthermore, a well-established Chinese-language dataset dedicated to the evaluation of hallucinations in text generation is presently lacking. Consequently, we have developed an Unconstrained Hallucination Generation Evaluation (UHGEval) benchmark, designed to compile outputs produced with minimal restrictions by LLMs. Concurrently, we have established a comprehensive benchmark evaluation framework to aid subsequent researchers in undertaking scalable and reproducible experiments. We have also executed extensive experiments, evaluating prominent Chinese language models and the GPT series models to derive professional performance insights regarding hallucination challenges.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

In multi-turn dialog, utterances do not always take the full form of sentences \cite{Carbonell1983DiscoursePA}, which naturally makes understanding the dialog context more difficult. However, it is essential to fully grasp the dialog context to generate a reasonable response. Hence, in this paper, we propose to improve the response generation performance by examining the model's ability to answer a reading comprehension question, where the question is focused on the omitted information in the dialog. Enlightened by the multi-task learning scheme, we propose a joint framework that unifies these two tasks, sharing the same encoder to extract the common and task-invariant features with different decoders to learn task-specific features. To better fusing information from the question and the dialog history in the encoding part, we propose to augment the Transformer architecture with a memory updater, which is designed to selectively store and update the history dialog information so as to support downstream tasks. For the experiment, we employ human annotators to write and examine a large-scale dialog reading comprehension dataset. Extensive experiments are conducted on this dataset, and the results show that the proposed model brings substantial improvements over several strong baselines on both tasks. In this way, we demonstrate that reasoning can indeed help better response generation and vice versa. We release our large-scale dataset for further research.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司