亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The impact of randomness on model training is poorly understood. How do differences in data order and initialization actually manifest in the model, such that some training runs outperform others or converge faster? Furthermore, how can we interpret the resulting training dynamics and the phase transitions that characterize different trajectories? To understand the effect of randomness on the dynamics and outcomes of neural network training, we train models multiple times with different random seeds and compute a variety of metrics throughout training, such as the $L_2$ norm, mean, and variance of the neural network's weights. We then fit a hidden Markov model (HMM) over the resulting sequences of metrics. The HMM represents training as a stochastic process of transitions between latent states, providing an intuitive overview of significant changes during training. Using our method, we produce a low-dimensional, discrete representation of training dynamics on grokking tasks, image classification, and masked language modeling. We use the HMM representation to study phase transitions and identify latent "detour" states that slow down convergence.

相關內容

Preventing the performance decay of Transformers on inputs longer than those used for training has been an important challenge in extending the context length of these models. Though the Transformer architecture has fundamentally no limits on the input sequence lengths it can process, the choice of position encoding used during training can limit the performance of these models on longer inputs. We propose a novel functional relative position encoding with progressive interpolation, FIRE, to improve Transformer generalization to longer contexts. We theoretically prove that this can represent some of the popular relative position encodings, such as T5's RPE, Alibi, and Kerple. We next empirically show that FIRE models have better generalization to longer contexts on both zero-shot language modeling and long text benchmarks.

Equilibria in auctions can be very difficult to analyze, beyond the symmetric environments where revenue equivalence renders the analysis straightforward. This paper takes a robust approach to evaluating the equilibria of auctions. Rather than identify the equilibria of an auction under specific environmental conditions, it considers worst-case analysis, where an auction is evaluated according to the worst environment and worst equilibrium in that environment. It identifies a non-equilibrium property of auctions that governs whether or not their worst-case equilibria are good for welfare and revenue. This property is easy to analyze, can be refined from data, and composes across markets where multiple auctions are run simultaneously.

Reliability of machine learning evaluation -- the consistency of observed evaluation scores across replicated model training runs -- is affected by several sources of nondeterminism which can be regarded as measurement noise. Current tendencies to remove noise in order to enforce reproducibility of research results neglect inherent nondeterminism at the implementation level and disregard crucial interaction effects between algorithmic noise factors and data properties. This limits the scope of conclusions that can be drawn from such experiments. Instead of removing noise, we propose to incorporate several sources of variance, including their interaction with data properties, into an analysis of significance and reliability of machine learning evaluation, with the aim to draw inferences beyond particular instances of trained models. We show how to use linear mixed effects models (LMEMs) to analyze performance evaluation scores, and to conduct statistical inference with a generalized likelihood ratio test (GLRT). This allows us to incorporate arbitrary sources of noise like meta-parameter variations into statistical significance testing, and to assess performance differences conditional on data properties. Furthermore, a variance component analysis (VCA) enables the analysis of the contribution of noise sources to overall variance and the computation of a reliability coefficient by the ratio of substantial to total variance.

Text-to-image diffusion models have demonstrated an unparalleled ability to generate high-quality, diverse images from a textual prompt. However, the internal representations learned by these models remain an enigma. In this work, we present Conceptor, a novel method to interpret the internal representation of a textual concept by a diffusion model. This interpretation is obtained by decomposing the concept into a small set of human-interpretable textual elements. Applied over the state-of-the-art Stable Diffusion model, Conceptor reveals non-trivial structures in the representations of concepts. For example, we find surprising visual connections between concepts, that transcend their textual semantics. We additionally discover concepts that rely on mixtures of exemplars, biases, renowned artistic styles, or a simultaneous fusion of multiple meanings of the concept. Through a large battery of experiments, we demonstrate Conceptor's ability to provide meaningful, robust, and faithful decompositions for a wide variety of abstract, concrete, and complex textual concepts, while allowing to naturally connect each decomposition element to its corresponding visual impact on the generated images. Our code will be available at: //hila-chefer.github.io/Conceptor/

Finding relevant and high-quality datasets to train machine learning models is a major bottleneck for practitioners. Furthermore, to address ambitious real-world use-cases there is usually the requirement that the data come labelled with high-quality annotations that can facilitate the training of a supervised model. Manually labelling data with high-quality labels is generally a time-consuming and challenging task and often this turns out to be the bottleneck in a machine learning project. Weak Supervised Learning (WSL) approaches have been developed to alleviate the annotation burden by offering an automatic way of assigning approximate labels (pseudo-labels) to unlabelled data based on heuristics, distant supervision and knowledge bases. We apply probabilistic generative latent variable models (PLVMs), trained on heuristic labelling representations of the original dataset, as an accurate, fast and cost-effective way to generate pseudo-labels. We show that the PLVMs achieve state-of-the-art performance across four datasets. For example, they achieve 22% points higher F1 score than Snorkel in the class-imbalanced Spouse dataset. PLVMs are plug-and-playable and are a drop-in replacement to existing WSL frameworks (e.g. Snorkel) or they can be used as benchmark models for more complicated algorithms, giving practitioners a compelling accuracy boost.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司