In the present work, we introduce a novel approach to enhance the precision of reduced order models by exploiting a multi-fidelity perspective and DeepONets. Reduced models provide a real-time numerical approximation by simplifying the original model. The error introduced by the such operation is usually neglected and sacrificed in order to reach a fast computation. We propose to couple the model reduction to a machine learning residual learning, such that the above-mentioned error can be learned by a neural network and inferred for new predictions. We emphasize that the framework maximizes the exploitation of high-fidelity information, using it for building the reduced order model and for learning the residual. In this work, we explore the integration of proper orthogonal decomposition (POD), and gappy POD for sensors data, with the recent DeepONet architecture. Numerical investigations for a parametric benchmark function and a nonlinear parametric Navier-Stokes problem are presented.
We introduce a novel framework for analyzing reinforcement learning (RL) in continuous state-action spaces, and use it to prove fast rates of convergence in both off-line and on-line settings. Our analysis highlights two key stability properties, relating to how changes in value functions and/or policies affect the Bellman operator and occupation measures. We argue that these properties are satisfied in many continuous state-action Markov decision processes, and demonstrate how they arise naturally when using linear function approximation methods. Our analysis offers fresh perspectives on the roles of pessimism and optimism in off-line and on-line RL, and highlights the connection between off-line RL and transfer learning.
Monotone missing data is a common problem in data analysis. However, imputation combined with dimensionality reduction can be computationally expensive, especially with the increasing size of datasets. To address this issue, we propose a Blockwise principal component analysis Imputation (BPI) framework for dimensionality reduction and imputation of monotone missing data. The framework conducts Principal Component Analysis (PCA) on the observed part of each monotone block of the data and then imputes on merging the obtained principal components using a chosen imputation technique. BPI can work with various imputation techniques and can significantly reduce imputation time compared to conducting dimensionality reduction after imputation. This makes it a practical and efficient approach for large datasets with monotone missing data. Our experiments validate the improvement in speed. In addition, our experiments also show that while applying MICE imputation directly on missing data may not yield convergence, applying BPI with MICE for the data may lead to convergence.
A high-order multi-time-step (MTS) scheme for the bond-based peridynamic (PD) model, an extension of classical continuous mechanics widely used for analyzing discontinuous problems like cracks, is proposed. The MTS scheme discretizes the spatial domain with a meshfree method and advances in time with a high-order Runge-Kutta method. To effectively handle discontinuities (cracks) that appear in a local subdomain in the solution, the scheme employs the Taylor expansion and Lagrange interpolation polynomials with a finer time step size, that is, coarse and fine time step sizes for smooth and discontinuous subdomains, respectively, to achieve accurate and efficient simulations. By eliminating unnecessary fine-scale resolution imposed on the entire domain, the MTS scheme outperforms the standard PD scheme by significantly reducing computational costs, particularly for problems with discontinuous solutions, as demonstrated by comprehensive theoretical analysis and numerical experiments.
In the context of survival analysis, data-driven neural network-based methods have been developed to model complex covariate effects. While these methods may provide better predictive performance than regression-based approaches, not all can model time-varying interactions and complex baseline hazards. To address this, we propose Case-Base Neural Networks (CBNNs) as a new approach that combines the case-base sampling framework with flexible neural network architectures. Using a novel sampling scheme and data augmentation to naturally account for censoring, we construct a feed-forward neural network that includes time as an input. CBNNs predict the probability of an event occurring at a given moment to estimate the full hazard function. We compare the performance of CBNNs to regression and neural network-based survival methods in a simulation and three case studies using two time-dependent metrics. First, we examine performance on a simulation involving a complex baseline hazard and time-varying interactions to assess all methods, with CBNN outperforming competitors. Then, we apply all methods to three real data applications, with CBNNs outperforming the competing models in two studies and showing similar performance in the third. Our results highlight the benefit of combining case-base sampling with deep learning to provide a simple and flexible framework for data-driven modeling of single event survival outcomes that estimates time-varying effects and a complex baseline hazard by design. An R package is available at //github.com/Jesse-Islam/cbnn.
In this paper, we present a hybrid neural-network and MAC (Marker-And-Cell) scheme for solving Stokes equations with singular forces on an embedded interface in regular domains. As known, the solution variables (the pressure and velocity) exhibit non-smooth behaviors across the interface so extra discretization efforts must be paid near the interface in order to have small order of local truncation errors in finite difference schemes. The present hybrid approach avoids such additional difficulty. It combines the expressive power of neural networks with the convergence of finite difference schemes to ease the code implementation and to achieve good accuracy at the same time. The key idea is to decompose the solution into singular and regular parts. The neural network learning machinery incorporating the given jump conditions finds the singular part solution, while the standard MAC scheme is used to obtain the regular part solution with associated boundary conditions. The two- and three-dimensional numerical results show that the present hybrid method converges with second-order accuracy for the velocity and first-order accuracy for the pressure, and it is comparable with the traditional immersed interface method in literature.
We consider a logic with truth values in the unit interval and which uses aggregation functions instead of quantifiers, and we describe a general approach to asymptotic elimination of aggregation functions and, indirectly, of asymptotic elimination of Mostowski style generalized quantifiers, since such can be expressed by using aggregation functions. The notion of ``local continuity'' of an aggregation function, which we make precise in two (related) ways, plays a central role in this approach.
In this work, we provide a simulation algorithm to simulate from a (multivariate) characteristic function, which is only accessible in a black-box format. We construct a generative neural network, whose loss function exploits a specific representation of the Maximum-Mean-Discrepancy metric to directly incorporate the targeted characteristic function. The construction is universal in the sense that it is independent of the dimension and that it does not require any assumptions on the given characteristic function. Furthermore, finite sample guarantees on the approximation quality in terms of the Maximum-Mean Discrepancy metric are derived. The method is illustrated in a short simulation study.
A general theory of efficient estimation for ergodic diffusion processes sampled at high frequency with an infinite time horizon is presented. High frequency sampling is common in many applications, with finance as a prominent example. The theory is formulated in term of approximate martingale estimating functions and covers a large class of estimators including most of the previously proposed estimators for diffusion processes. Easily checked conditions ensuring that an estimating function is an approximate martingale are derived, and general conditions ensuring consistency and asymptotic normality of estimators are given. Most importantly, simple conditions are given that ensure rate optimality and efficiency. Rate optimal estimators of parameters in the diffusion coefficient converge faster than estimators of drift coefficient parameters because they take advantage of the information in the quadratic variation. The conditions facilitate the choice among the multitude of estimators that have been proposed for diffusion models. Optimal martingale estimating functions in the sense of Godambe and Heyde and their high frequency approximations are, under weak conditions, shown to satisfy the conditions for rate optimality and efficiency. This provides a natural feasible method of constructing explicit rate optimal and efficient estimating functions by solving a linear equation.
We propose a method to numerically compute fractional derivatives (or the fractional Laplacian) on the whole real line via Riesz fractional integrals. The compactified real line is divided into a number of intervals, thus amounting to a multi-domain approach; after transformations in accordance with the underlying $Z_{q}$ curve ensuring analyticity of the respective integrands, the integrals over the different domains are computed with a Clenshaw-Curtis algorithm. As an example, we consider solitary waves for fractional Korteweg-de Vries equations and compare these to results obtained with a discrete Fourier transform.
The present work provides a comprehensive study of symmetric-conjugate operator splitting methods in the context of linear parabolic problems and demonstrates their additional benefits compared to symmetric splitting methods. Relevant applications include nonreversible systems and ground state computations for linear Schr\"odinger equations based on the imaginary time propagation. Numerical examples confirm the favourable error behaviour of higher-order symmetric-conjugate splitting methods and illustrate the usefulness of a time stepsize control, where the local error estimation relies on the computation of the imaginary parts and thus requires negligible costs.