Some early color photographic processes based on special color screen filters pose specific challenges in their digitization and digital presentation. Those challenges include dynamic range, resolution, and the difficulty of stitching geometrically-repeating patterns. We describe a novel method used to digitize the collection of early color photographs at the National Geographic Society which makes use of a custom open-source software tool to analyze and precisely stitch regular color screen processes.
A comprehensive mathematical model of the multiphysics flow of blood and Cerebrospinal Fluid (CSF) in the brain can be expressed as the coupling of a poromechanics system and Stokes' equations: the first describes fluids filtration through the cerebral tissue and the tissue's elastic response, while the latter models the flow of the CSF in the brain ventricles. This model describes the functioning of the brain's waste clearance mechanism, which has been recently discovered to play an essential role in the progress of neurodegenerative diseases. To model the interactions between different scales in the porous medium, we propose a physically consistent coupling between Multi-compartment Poroelasticity (MPE) equations and Stokes' equations. In this work, we introduce a numerical scheme for the discretization of such coupled MPE-Stokes system, employing a high-order discontinuous Galerkin method on polytopal grids to efficiently account for the geometric complexity of the domain. We analyze the stability and convergence of the space semidiscretized formulation, we prove a-priori error estimates, and we present a temporal discretization based on a combination of Newmark's $\beta$-method for the elastic wave equation and the $\theta$-method for the other equations of the model. Numerical simulations carried out on test cases with manufactured solutions validate the theoretical error estimates. We also present numerical results on a two-dimensional slice of a patient-specific brain geometry reconstructed from diagnostic images, to test in practice the advantages of the proposed approach.
This paper presents a Bayesian optimization framework for the automatic tuning of shared controllers which are defined as a Model Predictive Control (MPC) problem. The proposed framework includes the design of performance metrics as well as the representation of user inputs for simulation-based optimization. The framework is applied to the optimization of a shared controller for an Image Guided Therapy robot. VR-based user experiments confirm the increase in performance of the automatically tuned MPC shared controller with respect to a hand-tuned baseline version as well as its generalization ability.
This paper proposes two innovative vector transport operators, leveraging the Cayley transform, for the generalized Stiefel manifold embedded with a non-standard inner product. Specifically, it introduces the differentiated retraction and an approximation of the Cayley transform to the differentiated matrix exponential. These vector transports are demonstrated to satisfy the Ring-Wirth non-expansive condition under non-standard metrics while preserving isometry. Building upon the novel vector transport operators, we extend the modified Polak-Ribi$\acute{e}$re-Polyak (PRP) conjugate gradient method to the generalized Stiefel manifold. Under a non-monotone line search condition, we prove our algorithm globally converges to a stationary point. The efficiency of the proposed vector transport operators is empirically validated through numerical experiments involving generalized eigenvalue problems and canonical correlation analysis.
The availability of digital twins for the cardiovascular system will enable insightful computational tools both for research and clinical practice. This, however, demands robust and well defined methods for the different steps involved in the process. We present a vessel coordinate system (VCS) that enables the unanbiguous definition of locations in a vessel section, by adapting the idea of cylindrical coordinates to the vessel geometry. Using the VCS, point correspondence can be defined among different samples of a cohort, allowing data transfer, quantitative comparison, shape coregistration or population analysis. We provide the technical details for coordinates computation and discuss the assumptions taken to guarantee that they are well defined. The VCS is tested in a series of applications. We present a robust, low dimensional, patient specific vascular model and use it to study phenotype variability analysis of the thoracic aorta within a cohort of patients. Point correspondence is exploited to build an haemodynamics atlas of the aorta for the same cohort. Across the paper, we also show how VCS can be used for visualization of different types of data on the anatomy.
Exploring the semantic context in scene images is essential for indoor scene recognition. However, due to the diverse intra-class spatial layouts and the coexisting inter-class objects, modeling contextual relationships to adapt various image characteristics is a great challenge. Existing contextual modeling methods for indoor scene recognition exhibit two limitations: 1) During training, space-independent information, such as color, may hinder optimizing the network's capacity to represent the spatial context. 2) These methods often overlook the differences in coexisting objects across different scenes, suppressing scene recognition performance. To address these limitations, we propose SpaCoNet, which simultaneously models the Spatial relation and Co-occurrence of objects based on semantic segmentation. Firstly, the semantic spatial relation module (SSRM) is designed to explore the spatial relation among objects within a scene. With the help of semantic segmentation, this module decouples the spatial information from the image, effectively avoiding the influence of irrelevant features. Secondly, both spatial context features from the SSRM and deep features from the Image Feature Extraction Module are used to distinguish the coexisting object across different scenes. Finally, utilizing the discriminative features mentioned above, we employ the self-attention mechanism to explore the long-range co-occurrence among objects, and further generate a semantic-guided feature representation for indoor scene recognition. Experimental results on three widely used scene datasets demonstrate the effectiveness and generality of the proposed method. The code will be made publicly available after the blind review process is completed.
Dynamic shearing banding and fracturing in unsaturated porous media is a significant problem in engineering and science. This article proposes a multiphase micro-periporomechanics (uPPM) paradigm for modeling dynamic shear banding and fracturing in unsaturated porous media. Periporomechanics (PPM) is a nonlocal reformulation of classical poromechanics to model continuous and discontinuous deformation/fracture and fluid flow in porous media through a single framework. In PPM, a multiphase porous material is postulated as a collection of a finite number of mixed material points. The length scale in PPM that dictates the nonlocal interaction between material points is a mathematical object that lacks a direct physical meaning. As a novelty, in the coupled uPPM, a microstructure-based material length scale is incorporated by considering micro-rotations of the solid skeleton following the Cosserat continuum theory for solids. As a new contribution, we reformulate the second-order work for detecting material instability and the energy-based crack criterion and J-integral for modeling fracturing in the uPPM paradigm. The stabilized Cosserat PPM correspondence principle that mitigates the multiphase zero-energy mode instability is augmented to include unsaturated fluid flow. We have numerically implemented the novel uPPM paradigm through a dual-way fractional-step algorithm in time and a hybrid Lagrangian-Eulerian meshfree method in space. Numerical examples are presented to demonstrate the robustness and efficacy of the proposed uPPM paradigm for modeling shear banding and fracturing in unsaturated porous media.
We present a component-based model order reduction procedure to efficiently and accurately solve parameterized incompressible flows governed by the Navier-Stokes equations. Our approach leverages a non-overlapping optimization-based domain decomposition technique to determine the control variable that minimizes jumps across the interfaces between sub-domains. To solve the resulting constrained optimization problem, we propose both Gauss-Newton and sequential quadratic programming methods, which effectively transform the constrained problem into an unconstrained formulation. Furthermore, we integrate model order reduction techniques into the optimization framework, to speed up computations. In particular, we incorporate localized training and adaptive enrichment to reduce the burden associated with the training of the local reduced-order models. Numerical results are presented to demonstrate the validity and effectiveness of the overall methodology.
Several visual tasks, such as pedestrian detection and image-to-image translation, are challenging to accomplish in low light using RGB images. Heat variation of objects in thermal images can be used to overcome this. In this work, an end-to-end framework, which consists of a generative network and a detector network, is proposed to translate RGB image into Thermal ones and compare generated thermal images with real data. We have collected images from two different locations using the Parrot Anafi Thermal drone. After that, we created a two-stream network, preprocessed, augmented, the image data, and trained the generator and discriminator models from scratch. The findings demonstrate that it is feasible to translate RGB training data to thermal data using GAN. As a result, thermal data can now be produced more quickly and affordably, which is useful for security and surveillance applications.
We systematically study a wide variety of generative models spanning semantically-diverse image datasets to understand and improve the feature extractors and metrics used to evaluate them. Using best practices in psychophysics, we measure human perception of image realism for generated samples by conducting the largest experiment evaluating generative models to date, and find that no existing metric strongly correlates with human evaluations. Comparing to 17 modern metrics for evaluating the overall performance, fidelity, diversity, rarity, and memorization of generative models, we find that the state-of-the-art perceptual realism of diffusion models as judged by humans is not reflected in commonly reported metrics such as FID. This discrepancy is not explained by diversity in generated samples, though one cause is over-reliance on Inception-V3. We address these flaws through a study of alternative self-supervised feature extractors, find that the semantic information encoded by individual networks strongly depends on their training procedure, and show that DINOv2-ViT-L/14 allows for much richer evaluation of generative models. Next, we investigate data memorization, and find that generative models do memorize training examples on simple, smaller datasets like CIFAR10, but not necessarily on more complex datasets like ImageNet. However, our experiments show that current metrics do not properly detect memorization: none in the literature is able to separate memorization from other phenomena such as underfitting or mode shrinkage. To facilitate further development of generative models and their evaluation we release all generated image datasets, human evaluation data, and a modular library to compute 17 common metrics for 9 different encoders at //github.com/layer6ai-labs/dgm-eval.
We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.