亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Long-tailed object detection (LTOD) aims to handle the extreme data imbalance in real-world datasets, where many tail classes have scarce instances. One popular strategy is to explore extra data with image-level labels, yet it produces limited results due to (1) semantic ambiguity -- an image-level label only captures a salient part of the image, ignoring the remaining rich semantics within the image; and (2) location sensitivity -- the label highly depends on the locations and crops of the original image, which may change after data transformations like random cropping. To remedy this, we propose RichSem, a simple but effective method, which is robust to learn rich semantics from coarse locations without the need of accurate bounding boxes. RichSem leverages rich semantics from images, which are then served as additional soft supervision for training detectors. Specifically, we add a semantic branch to our detector to learn these soft semantics and enhance feature representations for long-tailed object detection. The semantic branch is only used for training and is removed during inference. RichSem achieves consistent improvements on both overall and rare-category of LVIS under different backbones and detectors. Our method achieves state-of-the-art performance without requiring complex training and testing procedures. Moreover, we show the effectiveness of our method on other long-tailed datasets with additional experiments. Code is available at \url{//github.com/MengLcool/RichSem}.

相關內容

Full-spectrum out-of-distribution (F-OOD) detection aims to accurately recognize in-distribution (ID) samples while encountering semantic and covariate shifts simultaneously. However, existing out-of-distribution (OOD) detectors tend to overfit the covariance information and ignore intrinsic semantic correlation, inadequate for adapting to complex domain transformations. To address this issue, we propose a Likelihood-Aware Semantic Alignment (LSA) framework to promote the image-text correspondence into semantically high-likelihood regions. LSA consists of an offline Gaussian sampling strategy which efficiently samples semantic-relevant visual embeddings from the class-conditional Gaussian distribution, and a bidirectional prompt customization mechanism that adjusts both ID-related and negative context for discriminative ID/OOD boundary. Extensive experiments demonstrate the remarkable OOD detection performance of our proposed LSA especially on the intractable Near-OOD setting, surpassing existing methods by a margin of $15.26\%$ and $18.88\%$ on two F-OOD benchmarks, respectively.

In the traditional cellular-based mobile edge computing (MEC), users at the edge of the cell are prone to suffer severe inter-cell interference and signal attenuation, leading to low throughput even transmission interruptions. Such edge effect severely obstructs offloading of tasks to MEC servers. To address this issue, we propose user-centric mobile edge computing (UCMEC), a novel MEC architecture integrating user-centric transmission, which can ensure high throughput and reliable communication for task offloading. Then, we formulate an optimization problem with joint consideration of task offloading, power control, and computing resource allocation in UCMEC, aiming at obtaining the optimal performance in terms of long-term average total delay. To solve the intractable problem, we propose two decentralized joint optimization schemes based on multi-agent deep reinforcement learning (MADRL) and convex optimization, which consider both cooperation and non-cooperation among network nodes. Simulation results demonstrate that the proposed schemes in UCMEC can significantly improve the uplink transmission rate by at most 343.56% and reduce the long-term average total delay by at most 45.57% compared to traditional cellular-based MEC.

We develop a post-selection inference method for the Cox proportional hazards model with interval-censored data, which provides asymptotically valid p-values and confidence intervals conditional on the model selected by lasso. The method is based on a pivotal quantity that is shown to converge to a uniform distribution under local alternatives. The proof can be adapted to many other regression models, which is illustrated by the extension to generalized linear models and the Cox model with right-censored data. Our method involves estimation of the efficient information matrix, for which several approaches are proposed with proof of their consistency. Thorough simulation studies show that our method has satisfactory performance in samples of modest sizes. The utility of the method is illustrated via an application to an Alzheimer's disease study.

Many real-world applications (e.g., note taking, search) require extracting a sentence or paragraph from a document and showing that snippet to a human outside of the source document. Yet, users may find snippets difficult to understand as they lack context from the original document. In this work, we use language models to rewrite snippets from scientific documents to be read on their own. First, we define the requirements and challenges for this user-facing decontextualization task, such as clarifying where edits occur and handling references to other documents. Second, we propose a framework that decomposes the task into three stages: question generation, question answering, and rewriting. Using this framework, we collect gold decontextualizations from experienced scientific article readers. We then conduct a range of experiments across state-of-the-art commercial and open-source language models to identify how to best provide missing-but-relevant information to models for our task. Finally, we develop QaDecontext, a simple prompting strategy inspired by our framework that improves over end-to-end prompting. We conclude with analysis that finds, while rewriting is easy, question generation and answering remain challenging for today's models.

When deploying machine learning (ML) applications, the automated allocation of computing resources-commonly referred to as autoscaling-is crucial for maintaining a consistent inference time under fluctuating workloads. The objective is to maximize the Quality of Service metrics, emphasizing performance and availability, while minimizing resource costs. In this paper, we compare scalable deployment techniques across three levels of scaling: at the application level (TorchServe, RayServe) and the container level (K3s) in a local environment (production server), as well as at the container and machine levels in a cloud environment (Amazon Web Services Elastic Container Service and Elastic Kubernetes Service). The comparison is conducted through the study of mean and standard deviation of inference time in a multi-client scenario, along with upscaling response times. Based on this analysis, we propose a deployment strategy for both local and cloud-based environments.

Inference of community structure in probabilistic graphical models may not be consistent with fairness constraints when nodes have demographic attributes. Certain demographics may be over-represented in some detected communities and under-represented in others. This paper defines a novel $\ell_1$-regularized pseudo-likelihood approach for fair graphical model selection. In particular, we assume there is some community or clustering structure in the true underlying graph, and we seek to learn a sparse undirected graph and its communities from the data such that demographic groups are fairly represented within the communities. In the case when the graph is known a priori, we provide a convex semidefinite programming approach for fair community detection. We establish the statistical consistency of the proposed method for both a Gaussian graphical model and an Ising model for, respectively, continuous and binary data, proving that our method can recover the graphs and their fair communities with high probability.

We demonstrate a user-focused verification approach for evaluating probability forecasts of binary outcomes (also known as probabilistic classifiers) that is (i) based on proper scoring rules, (ii) focuses on user decision thresholds, and (iii) provides actionable insights. We argue that the widespread use of categorical performance diagrams and the critical success index to evaluate probabilistic forecasts may produce misleading results and instead illustrate how Murphy diagrams are better for understanding performance across user decision thresholds. The use of proper scoring rules that account for the relative importance of different user decision thresholds is shown to impact scores of overall performance, as well as supporting measures of discrimination and calibration. These methods are demonstrated by evaluating several probabilistic thunderstorm forecast systems. Furthermore, we illustrate an approach that allows a fair comparison between continuous probabilistic forecasts and categorical outlooks using the FIxed Risk Multicategorical (FIRM) score and establish the relationship between the FIRM score and Murphy diagrams. The results highlight how the performance of thunderstorm forecasts produced for tropical Australian waters varies between operational meteorologists and an automated system depending on what decision thresholds a user is acting on. A hindcast of a new automated system is shown to generally perform better than both meteorologists and the old automated system across tropical Australian waters. While the methods are illustrated using thunderstorm forecasts, they are applicable for evaluating probabilistic forecasts for any situation with binary outcomes.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司