亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work introduces DADAO: the first decentralized, accelerated, asynchronous, primal, first-order algorithm to minimize a sum of $L$-smooth and $\mu$-strongly convex functions distributed over a given network of size $n$. Our key insight is based on modeling the local gradient updates and gossip communication procedures with separate independent Poisson Point Processes. This allows us to decouple the computation and communication steps, which can be run in parallel, while making the whole approach completely asynchronous, leading to communication acceleration compared to synchronous approaches. Our new method employs primal gradients and does not use a multi-consensus inner loop nor other ad-hoc mechanisms such as Error Feedback, Gradient Tracking, or a Proximal operator. By relating the inverse of the smallest positive eigenvalue of the Laplacian matrix $\chi_1$ and the maximal resistance $\chi_2\leq \chi_1$ of the graph to a sufficient minimal communication rate between the nodes of the network, we show that our algorithm requires $\mathcal{O}(n\sqrt{\frac{L}{\mu}}\log(\frac{1}{\epsilon}))$ local gradients and only $\mathcal{O}(n\sqrt{\chi_1\chi_2}\sqrt{\frac{L}{\mu}}\log(\frac{1}{\epsilon}))$ communications to reach a precision $\epsilon$, up to logarithmic terms. Thus, we simultaneously obtain an accelerated rate for both computations and communications, leading to an improvement over state-of-the-art works, our simulations further validating the strength of our relatively unconstrained method. We also propose a SDP relaxation to find the optimal gossip rate of each edge minimizing the total number of communications for a given graph, resulting in faster convergence compared to standard approaches relying on uniform communication weights. Our source code is released on a public repository.

相關內容

Interval Markov Decision Processes (IMDPs) are finite-state uncertain Markov models, where the transition probabilities belong to intervals. Recently, there has been a surge of research on employing IMDPs as abstractions of stochastic systems for control synthesis. However, due to the absence of algorithms for synthesis over IMDPs with continuous action-spaces, the action-space is assumed discrete a-priori, which is a restrictive assumption for many applications. Motivated by this, we introduce continuous-action IMDPs (caIMDPs), where the bounds on transition probabilities are functions of the action variables, and study value iteration for maximizing expected cumulative rewards. Specifically, we decompose the max-min problem associated to value iteration to $|\mathcal{Q}|$ max problems, where $|\mathcal{Q}|$ is the number of states of the caIMDP. Then, exploiting the simple form of these max problems, we identify cases where value iteration over caIMDPs can be solved efficiently (e.g., with linear or convex programming). We also gain other interesting insights: e.g., in certain cases where the action set $\mathcal{A}$ is a polytope, synthesis over a discrete-action IMDP, where the actions are the vertices of $\mathcal{A}$, is sufficient for optimality. We demonstrate our results on a numerical example. Finally, we include a short discussion on employing caIMDPs as abstractions for control synthesis.

Federated learning (FL) enables collaborative training of machine learning models while protecting the privacy of data. Traditional FL heavily relies on a trusted centralized server. It is vulnerable to poisoning attacks, the sharing of raw model updates puts the private training data under the risk of being reconstructed, and it suffers from an efficiency problem due to heavy communication cost. Although decentralized FL eliminates the central dependence, it may worsen the other problems due to insufficient constraints on the behavior of participants and distributed consensus on the global model update. In this paper, we propose a blockchain-based fully decentralized peer-to-peer (P2P) framework for FL, called BlockDFL for short. It leverages blockchain to force participants to behave well. It integrates gradient compression and our designed voting mechanism to coordinate decentralized FL among peer participants without mutual trust, while preventing data from being reconstructed from transmitted model updates. Extensive experiments conducted on two real-world datasets exhibit that BlockDFL obtains competitive accuracy compared to centralized FL and can defend poisoning attacks while achieving efficiency and scalability. Especially when the proportion of malicious participants is as high as 40%, BlockDFL can still preserve the accuracy of FL, outperforming existing fully decentralized FL frameworks based on blockchain.

We study the design of energy-efficient algorithms for the LOCAL and CONGEST models. Specifically, as a measure of complexity, we consider the maximum, taken over all the edges, or over all the nodes, of the number of rounds at which an edge, or a node, is active in the algorithm. We first show that every Turing-computable problem has a CONGEST algorithm with constant node-activation complexity, and therefore constant edge-activation complexity as well. That is, every node (resp., edge) is active in sending (resp., transmitting) messages for only $O(1)$ rounds during the whole execution of the algorithm. In other words, every Turing-computable problem can be solved by an algorithm consuming the least possible energy. In the LOCAL model, the same holds obviously, but with the additional feature that the algorithm runs in $O(\mbox{poly}(n))$ rounds in $n$-node networks. However, we show that insisting on algorithms running in $O(\mbox{poly}(n))$ rounds in the CONGEST model comes with a severe cost in terms of energy. Namely, there are problems requiring $\Omega(\mbox{poly}(n))$ edge-activations (and thus $\Omega(\mbox{poly}(n))$ node-activations as well) in the CONGEST model whenever solved by algorithms bounded to run in $O(\mbox{poly}(n))$ rounds. Finally, we demonstrate the existence of a sharp separation between the edge-activation complexity and the node-activation complexity in the CONGEST model, for algorithms bounded to run in $O(\mbox{poly}(n))$ rounds. Specifically, under this constraint, there is a problem with $O(1)$ edge-activation complexity but $\tilde{\Omega}(n^{1/4})$ node-activation complexity.

Federated optimization, wherein several agents in a network collaborate with a central server to achieve optimal social cost over the network with no requirement for exchanging information among agents, has attracted significant interest from the research community. In this context, agents demand resources based on their local computation. Due to the exchange of optimization parameters such as states, constraints, or objective functions with a central server, an adversary may infer sensitive information of agents. We develop LDP-AIMD, a local differentially-private additive-increase and multiplicative-decrease (AIMD) algorithm, to allocate multiple divisible shared resources to agents in a network. The LDP-AIMD algorithm provides a differential privacy guarantee to agents in the network. No inter-agent communication is required; however, the central server keeps track of the aggregate consumption of resources. We present experimental results to check the efficacy of the algorithm. Moreover, we present empirical analyses for the trade-off between privacy and the efficiency of the algorithm.

In this paper, by constructing extremely hard examples of CSP (with large domains) and SAT (with long clauses), we prove that such examples cannot be solved without exhaustive search, which implies a weaker conclusion P $\neq$ NP. This constructive approach for proving impossibility results is very different (and missing) from those currently used in computational complexity theory, but is similar to that used by Kurt G\"{o}del in proving his famous logical impossibility results. Just as shown by G\"{o}del's results that proving formal unprovability is feasible in mathematics, the results of this paper show that proving computational hardness is not hard in mathematics. Specifically, proving lower bounds for many problems, such as 3-SAT, can be challenging because these problems have various effective strategies available for avoiding exhaustive search. However, in cases of extremely hard examples, exhaustive search may be the only viable option, and proving its necessity becomes more straightforward. Consequently, it makes the separation between SAT (with long clauses) and 3-SAT much easier than that between 3-SAT and 2-SAT. Finally, the main results of this paper demonstrate that the fundamental difference between the syntax and the semantics revealed by G\"{o}del's results also exists in CSP and SAT.

We introduce novel convergence results for asynchronous iterations that appear in the analysis of parallel and distributed optimization algorithms. The results are simple to apply and give explicit estimates for how the degree of asynchrony impacts the convergence rates of the iterates. Our results shorten, streamline and strengthen existing convergence proofs for several asynchronous optimization methods and allow us to establish convergence guarantees for popular algorithms that were thus far lacking a complete theoretical understanding. Specifically, we use our results to derive better iteration complexity bounds for proximal incremental aggregated gradient methods, to obtain tighter guarantees depending on the average rather than maximum delay for the asynchronous stochastic gradient descent method, to provide less conservative analyses of the speedup conditions for asynchronous block-coordinate implementations of Krasnoselskii-Mann iterations, and to quantify the convergence rates for totally asynchronous iterations under various assumptions on communication delays and update rates.

The stochastic approximation (SA) algorithm is a widely used probabilistic method for finding a zero or a fixed point of a vector-valued funtion, when only noisy measurements of the function are available. In the literature to date, one makes a distinction between ``synchronous'' updating, whereby every component of the current guess is updated at each time, and ``asynchronous'' updating, whereby only one component is updated. In this paper, we study an intermediate situation that we call ``batch asynchronous stochastic approximation'' (BASA), in which, at each time instant, \textit{some but not all} components of the current estimated solution are updated. BASA allows the user to trade off memory requirements against time complexity. We develop a general methodology for proving that such algorithms converge to the fixed point of the map under study. These convergence proofs make use of weaker hypotheses than existing results. Specifically, existing convergence proofs require that the measurement noise is a zero-mean i.i.d\ sequence or a martingale difference sequence. In the present paper, we permit biased measurements, that is, measurement noises that have nonzero conditional mean. Also, all convergence results to date assume that the stochastic step sizes satisfy a probabilistic analog of the well-known Robbins-Monro conditions. We replace this assumption by a purely deterministic condition on the irreducibility of the underlying Markov processes. As specific applications to Reinforcement Learning, we analyze the temporal difference algorithm $TD(\lambda)$ for value iteration, and the $Q$-learning algorithm for finding the optimal action-value function. In both cases, we establish the convergence of these algorithms, under milder conditions than in the existing literature.

Variational inequalities are a formalism that includes games, minimization, saddle point, and equilibrium problems as special cases. Methods for variational inequalities are therefore universal approaches for many applied tasks, including machine learning problems. This work concentrates on the decentralized setting, which is increasingly important but not well understood. In particular, we consider decentralized stochastic (sum-type) variational inequalities over fixed and time-varying networks. We present lower complexity bounds for both communication and local iterations and construct optimal algorithms that match these lower bounds. Our algorithms are the best among the available literature not only in the decentralized stochastic case, but also in the decentralized deterministic and non-distributed stochastic cases. Experimental results confirm the effectiveness of the presented algorithms.

Federated Learning (FL) is a novel machine learning framework, which enables multiple distributed devices cooperatively to train a shared model scheduled by a central server while protecting private data locally. However, the non-independent-and-identically-distributed (Non-IID) data samples and frequent communication across participants may significantly slow down the convergent rate and increase communication costs. To achieve fast convergence, we ameliorate the conventional local updating rule by introducing the aggregated gradients at each local update epoch, and propose an adaptive learning rate algorithm that further takes the deviation of local parameter and global parameter into consideration. The above adaptive learning rate design requires all clients' local information including the local parameters and gradients, which is challenging as there is no communication during the local update epochs. To obtain a decentralized adaptive learning rate for each client, we utilize the mean field approach by introducing two mean field terms to estimate the average local parameters and gradients respectively, which does not require the clients to exchange their local information with each other at each local epoch. Numerical results show that our proposed framework is superior to the state-of-art FL schemes in both model accuracy and convergent rate for IID and Non-IID datasets.

We introduce a decentralized mechanism for pricing and exchanging alternatives constrained by transaction costs. We characterize the time-invariant solutions of a heat equation involving a (weighted) Tarski Laplacian operator, defined for max-plus matrix-weighted graphs, as approximate equilibria of the trading system. We study algebraic properties of the solution sets as well as convergence behavior of the dynamical system. We apply these tools to the ``economic problem'' of allocating scarce resources among competing uses. Our theory suggests differences in competitive equilibrium, bargaining, or cost-benefit analysis, depending on the context, are largely due to differences in the way that transaction costs are incorporated into the decision-making process. We present numerical simulations of the synchronization algorithm (RRAggU), demonstrating our theoretical findings.

北京阿比特科技有限公司