亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a versatile adaptation of existing dimensionality reduction (DR) objectives, enabling the simultaneous reduction of both sample and feature sizes. Correspondances between input and embedding samples are computed through a semi-relaxed Gromov-Wasserstein optimal transport (OT) problem. When the embedding sample size matches that of the input, our model recovers classical popular DR models. When the embedding's dimensionality is unconstrained, we show that the OT plan delivers a competitive hard clustering. We emphasize the importance of intermediate stages that blend DR and clustering for summarizing real data and apply our method to visualize datasets of images.

相關內容

We address the problem of human motion tracking by registering a surface to 3-D data. We propose a method that iteratively computes two things: Maximum likelihood estimates for both the kinematic and free-motion parameters of a kinematic human-body representation, as well as probabilities that the data are assigned either to a body part, or to an outlier cluster. We introduce a new metric between observed points and normals on one side, and a parameterized surface on the other side, the latter being defined as a blending over a set of ellipsoids. We claim that this metric is well suited when one deals with either visual-hull or visual-shape observations. We illustrate the method by tracking human motions using sparse visual-shape data (3-D surface points and normals) gathered from imperfect silhouettes.

Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination. Among these algorithms, diffusion model (DM)-based methods have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution. To tackle these problems, we propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task. Reti-Diff comprises two key components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RGformer). To ensure detailed reconstruction and illumination correction, RLDM is empowered to acquire Retinex knowledge and extract reflectance and illumination priors. These priors are subsequently utilized by RGformer to guide the decomposition of image features into their respective reflectance and illumination components. Following this, RGformer further enhances and consolidates the decomposed features, resulting in the production of refined images with consistent content and robustness to handle complex degradation scenarios. Extensive experiments show that Reti-Diff outperforms existing methods on three IDIR tasks, as well as downstream applications. Code will be available at \url{//github.com/ChunmingHe/Reti-Diff}.

We examine the extent to which sublinear-sample property testing and estimation applies to settings where samples are independently but not identically distributed. Specifically, we consider the following distributional property testing framework: Suppose there is a set of distributions over a discrete support of size $k$, $\textbf{p}_1, \textbf{p}_2,\ldots,\textbf{p}_T$, and we obtain $c$ independent draws from each distribution. Suppose the goal is to learn or test a property of the average distribution, $\textbf{p}_{\mathrm{avg}}$. This setup models a number of important practical settings where the individual distributions correspond to heterogeneous entities -- either individuals, chronologically distinct time periods, spatially separated data sources, etc. From a learning standpoint, even with $c=1$ samples from each distribution, $\Theta(k/\varepsilon^2)$ samples are necessary and sufficient to learn $\textbf{p}_{\mathrm{avg}}$ to within error $\varepsilon$ in TV distance. To test uniformity or identity -- distinguishing the case that $\textbf{p}_{\mathrm{avg}}$ is equal to some reference distribution, versus has $\ell_1$ distance at least $\varepsilon$ from the reference distribution, we show that a linear number of samples in $k$ is necessary given $c=1$ samples from each distribution. In contrast, for $c \ge 2$, we recover the usual sublinear sample testing of the i.i.d. setting: we show that $O(\sqrt{k}/\varepsilon^2 + 1/\varepsilon^4)$ samples are sufficient, matching the optimal sample complexity in the i.i.d. case in the regime where $\varepsilon \ge k^{-1/4}$. Additionally, we show that in the $c=2$ case, there is a constant $\rho > 0$ such that even in the linear regime with $\rho k$ samples, no tester that considers the multiset of samples (ignoring which samples were drawn from the same $\textbf{p}_i$) can perform uniformity testing.

Understanding human perceptions presents a formidable multimodal challenge for computers, encompassing aspects such as sentiment tendencies and sense of humor. While various methods have recently been introduced to extract modality-invariant and specific information from diverse modalities, with the goal of enhancing the efficacy of multimodal learning, few works emphasize this aspect in large language models. In this paper, we introduce a novel multimodal prompt strategy tailored for tuning large language models. Our method assesses the correlation among different modalities and isolates the modality-invariant and specific components, which are then utilized for prompt tuning. This approach enables large language models to efficiently and effectively assimilate information from various modalities. Furthermore, our strategy is designed with scalability in mind, allowing the integration of features from any modality into pretrained large language models. Experimental results on public datasets demonstrate that our proposed method significantly improves performance compared to previous methods.

Finite state machines (FSM's) are implemented with sequential circuits and are used to orchestrate the operation of hardware designs. Sequential obfuscation schemes aimed at preventing IP theft often operate by augmenting a design's FSM post-synthesis. Many such schemes are based on the ability to recover the FSM's topology from the synthesized design. In this paper, we present two tools which can improve the performance of topology extraction: RECUT, which extracts the FSM implementation from a netlist, and REFSM-SAT, which solves topology enumeration as a series of SAT problems. In some cases, these tools can improve performance significantly over current methods, attaining up to a 99\% decrease in runtime.

A popular approach for improving the correctness of output from large language models (LLMs) is Self-Consistency - poll the LLM multiple times and output the most frequent solution. Existing Self-Consistency techniques always generate a constant number of samples per question, where a better approach will be to non-uniformly distribute the available budget based on the amount of agreement in the samples generated so far. In response, we introduce Adaptive-Consistency, a cost-efficient, model-agnostic technique that dynamically adjusts the number of samples per question using a lightweight stopping criterion. Our experiments over 17 reasoning and code generation datasets and three LLMs demonstrate that Adaptive-Consistency reduces sample budget by up to 7.9 times with an average accuracy drop of less than 0.1%. Our code and data are available at //www.sample-step-by-step.info

The problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs) presents two challenges: given a QA context (question and answer choice), methods need to (i) identify relevant knowledge from large KGs, and (ii) perform joint reasoning over the QA context and KG. In this work, we propose a new model, QA-GNN, which addresses the above challenges through two key innovations: (i) relevance scoring, where we use LMs to estimate the importance of KG nodes relative to the given QA context, and (ii) joint reasoning, where we connect the QA context and KG to form a joint graph, and mutually update their representations through graph neural networks. We evaluate QA-GNN on the CommonsenseQA and OpenBookQA datasets, and show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning, e.g., correctly handling negation in questions.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness.

Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

北京阿比特科技有限公司