亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a $p$-dimensional, centered normal population such that all variables have a positive variance $\sigma^2$ and any correlation coefficient between different variables is a given nonnegative constant $\rho<1$. Suppose that both the sample size $n$ and population dimension $p$ tend to infinity with $p/n \to c>0$. We prove that the limiting spectral distribution of a sample correlation matrix is Mar\v{c}enko-Pastur distribution of index $c$ and scale parameter $1-\rho$. By the limiting spectral distributions, we rigorously show the limiting behavior of widespread stopping rules Guttman-Kaiser criterion and cumulative-percentage-of-variation rule in PCA and EFA. As a result, we establish the following dichotomous behavior of Guttman-Kaiser criterion when both $n$ and $p$ are large, but $p/n$ is small: (1) the criterion retains a small number of variables for $\rho>0$, as suggested by Kaiser, Humphreys, and Tucker [Kaiser, H. F. (1992). On Cliff's formula, the Kaiser-Guttman rule and the number of factors. Percept. Mot. Ski. 74]; and (2) the criterion retains $p/2$ variables for $\rho=0$, as in a simulation study [Yeomans, K. A. and Golder, P. A. (1982). The Guttman-Kaiser criterion as a predictor of the number of common factors. J. Royal Stat. Soc. Series D. 31(3)].

相關內容

This work considers Gaussian process interpolation with a periodized version of the Mat{\'e}rn covariance function introduced by Stein (22, Section 6.7). Convergence rates are studied for the joint maximum likelihood estimation of the regularity and the amplitude parameters when the data is sampled according to the model. The mean integrated squared error is also analyzed with fixed and estimated parameters, showing that maximum likelihood estimation yields asymptotically the same error as if the ground truth was known. Finally, the case where the observed function is a fixed deterministic element of a Sobolev space of continuous functions is also considered, suggesting that bounding assumptions on some parameters can lead to different estimates.

We derive an $L_1$-bound between the coefficients of the optimal causal filter applied to the data-generating process and its approximation based on finite sample observations. Here, we assume that the data-generating process is second-order stationary with either short or long memory autocovariances. To obtain the $L_1$-bound, we first provide an exact expression of the causal filter coefficients and their approximation in terms of the absolute convergent series of the multistep ahead infinite and finite predictor coefficients, respectively. Then, we prove a so-called uniform-type Baxter's inequality to obtain a bound for the difference between the two multistep ahead predictor coefficients (under both short and memory time series). The $L_1$-approximation error bound of the causal filter coefficients can be used to evaluate the quality of the predictions of time series through the mean squared error criterion.

The training of high-dimensional regression models on comparably sparse data is an important yet complicated topic, especially when there are many more model parameters than observations in the data. From a Bayesian perspective, inference in such cases can be achieved with the help of shrinkage prior distributions, at least for generalized linear models. However, real-world data usually possess multilevel structures, such as repeated measurements or natural groupings of individuals, which existing shrinkage priors are not built to deal with. We generalize and extend one of these priors, the R2D2 prior by Zhang et al. (2020), to linear multilevel models leading to what we call the R2D2M2 prior. The proposed prior enables both local and global shrinkage of the model parameters. It comes with interpretable hyperparameters, which we show to be intrinsically related to vital properties of the prior, such as rates of concentration around the origin, tail behavior, and amount of shrinkage the prior exerts. We offer guidelines on how to select the prior's hyperparameters by deriving shrinkage factors and measuring the effective number of non-zero model coefficients. Hence, the user can readily evaluate and interpret the amount of shrinkage implied by a specific choice of hyperparameters. Finally, we perform extensive experiments on simulated and real data, showing that our inference procedure for the prior is well calibrated, has desirable global and local regularization properties and enables the reliable and interpretable estimation of much more complex Bayesian multilevel models than was previously possible.

We derive unconditionally stable and convergent variable-step BDF2 scheme for solving the MBE model with slope selection. The discrete orthogonal convolution kernels of the variable-step BDF2 method is commonly utilized recently for solving the phase field models. In this paper, we further prove some new inequalities, concerning the vector forms, for the kernels especially dealing with the nonlinear terms in the slope selection model. The convergence rate of the fully discrete scheme is proved to be two both in time and space in $L^2$ norm under the setting of the variable time steps. Energy dissipation law is proved rigorously with a modified energy by adding a small term to the discrete version of the original free energy functional. Two numerical examples including an adaptive time-stepping strategy are given to verify the convergence rate and the energy dissipation law.

Major Internet advertising platforms offer budget pacing tools as a standard service for advertisers to manage their ad campaigns. Given the inherent non-stationarity in an advertiser's value and also competing advertisers' values over time, a commonly used approach is to learn a target expenditure plan that specifies a target spend as a function of time, and then run a controller that tracks this plan. This raises the question: how many historical samples are required to learn a good expenditure plan? We study this question by considering an advertiser repeatedly participating in $T$ second-price auctions, where the tuple of her value and the highest competing bid is drawn from an unknown time-varying distribution. The advertiser seeks to maximize her total utility subject to her budget constraint. Prior work has shown the sufficiency of $T\log T$ samples per distribution to achieve the optimal $O(\sqrt{T})$-regret. We dramatically improve this state-of-the-art and show that just one sample per distribution is enough to achieve the near-optimal $\tilde O(\sqrt{T})$-regret, while still being robust to noise in the sampling distributions.

Modern statistical problems often involve such linear inequality constraints on model parameters. Ignoring natural parameter constraints usually results in less efficient statistical procedures. To this end, we define a notion of `sparsity' for such restricted sets using lower-dimensional features. We allow our framework to be flexible so that the number of restrictions may be higher than the number of parameters. One such situation arise in estimation of monotone curve using a non parametric approach e.g. splines. We show that the proposed notion of sparsity agrees with the usual notion of sparsity in the unrestricted case and proves the validity of the proposed definition as a measure of sparsity. The proposed sparsity measure also allows us to generalize popular priors for sparse vector estimation to the constrained case.

Many materials processes and properties depend on the anisotropy of the energy of grain boundaries, i.e. on the fact that this energy is a function of the five geometric degrees of freedom (DOF) of the grain boundaries. To access this parameter space in an efficient way and discover energy cusps in unexplored regions, a method was recently established, which combines atomistic simulations with statistical methods 10.1002/adts.202100615. This sequential sampling technique is now extended in the spirit of an active learning algorithm by adding a criterion to decide when the sampling is advanced enough to stop. To this instance, two parameters to analyse the sampling results on the fly are introduced: the number of cusps, which correspond to the most interesting and important regions of the energy landscape, and the maximum change of energy between two sequential iterations. Monitoring these two quantities provides valuable insight into how the subspaces are energetically structured. The combination of both parameters provides the necessary information to evaluate the sampling of the 2D subspaces of grain boundary plane inclinations of even non-periodic, low angle grain boundaries. With a reasonable number of datapoints in the initial design, only a few sequential iterations already influence the accuracy of the sampling substantially and the new algorithm outperforms regular high-throughput sampling.

With continuous outcomes, the average causal effect is typically defined using a contrast of expected potential outcomes. However, in the presence of skewed outcome data, the expectation may no longer be meaningful. In practice the typical approach is to either "ignore or transform" - ignore the skewness altogether or transform the outcome to obtain a more symmetric distribution, although neither approach is entirely satisfactory. Alternatively the causal effect can be redefined as a contrast of median potential outcomes, yet discussion of confounding-adjustment methods to estimate this parameter is limited. In this study we described and compared confounding-adjustment methods to address this gap. The methods considered were multivariable quantile regression, an inverse probability weighted (IPW) estimator, weighted quantile regression and two little-known implementations of g-computation for this problem. Motivated by a cohort investigation in the Longitudinal Study of Australian Children, we conducted a simulation study that found the IPW estimator, weighted quantile regression and g-computation implementations minimised bias when the relevant models were correctly specified, with g-computation additionally minimising the variance. These methods provide appealing alternatives to the common "ignore or transform" approach and multivariable quantile regression, enhancing our capability to obtain meaningful causal effect estimates with skewed outcome data.

We give an improved theoretical analysis of score-based generative modeling. Under a score estimate with small $L^2$ error (averaged across timesteps), we provide efficient convergence guarantees for any data distribution with second-order moment, by either employing early stopping or assuming smoothness condition on the score function of the data distribution. Our result does not rely on any log-concavity or functional inequality assumption and has a logarithmic dependence on the smoothness. In particular, we show that under only a finite second moment condition, approximating the following in reverse KL divergence in $\epsilon$-accuracy can be done in $\tilde O\left(\frac{d \log (1/\delta)}{\epsilon}\right)$ steps: 1) the variance-$\delta$ Gaussian perturbation of any data distribution; 2) data distributions with $1/\delta$-smooth score functions. Our analysis also provides a quantitative comparison between different discrete approximations and may guide the choice of discretization points in practice.

Modern reinforcement learning (RL) often faces an enormous state-action space. Existing analytical results are typically for settings with a small number of state-actions, or simple models such as linearly modeled Q-functions. To derive statistically efficient RL policies handling large state-action spaces, with more general Q-functions, some recent works have considered nonlinear function approximation using kernel ridge regression. In this work, we derive sample complexities for kernel based Q-learning when a generative model exists. We propose a nonparametric Q-learning algorithm which finds an $\epsilon$-optimal policy in an arbitrarily large scale discounted MDP. The sample complexity of the proposed algorithm is order optimal with respect to $\epsilon$ and the complexity of the kernel (in terms of its information gain). To the best of our knowledge, this is the first result showing a finite sample complexity under such a general model.

北京阿比特科技有限公司