Many materials processes and properties depend on the anisotropy of the energy of grain boundaries, i.e. on the fact that this energy is a function of the five geometric degrees of freedom (DOF) of the grain boundaries. To access this parameter space in an efficient way and discover energy cusps in unexplored regions, a method was recently established, which combines atomistic simulations with statistical methods 10.1002/adts.202100615. This sequential sampling technique is now extended in the spirit of an active learning algorithm by adding a criterion to decide when the sampling is advanced enough to stop. To this instance, two parameters to analyse the sampling results on the fly are introduced: the number of cusps, which correspond to the most interesting and important regions of the energy landscape, and the maximum change of energy between two sequential iterations. Monitoring these two quantities provides valuable insight into how the subspaces are energetically structured. The combination of both parameters provides the necessary information to evaluate the sampling of the 2D subspaces of grain boundary plane inclinations of even non-periodic, low angle grain boundaries. With a reasonable number of datapoints in the initial design, only a few sequential iterations already influence the accuracy of the sampling substantially and the new algorithm outperforms regular high-throughput sampling.
Deep learning algorithms have recently shown to be a successful tool in estimating parameters of statistical models for which simulation is easy, but likelihood computation is challenging. But the success of these approaches depends on simulating parameters that sufficiently reproduce the observed data, and, at present, there is a lack of efficient methods to produce these simulations. We develop new black-box procedures to estimate parameters of statistical models based only on weak parameter structure assumptions. For well-structured likelihoods with frequent occurrences, such as in time series, this is achieved by pre-training a deep neural network on an extensive simulated database that covers a wide range of data sizes. For other types of complex dependencies, an iterative algorithm guides simulations to the correct parameter region in multiple rounds. These approaches can successfully estimate and quantify the uncertainty of parameters from non-Gaussian models with complex spatial and temporal dependencies. The success of our methods is a first step towards a fully flexible automatic black-box estimation framework.
Large neural networks can improve the accuracy and generalization on tasks across many domains. However, this trend cannot continue indefinitely due to limited hardware memory. As a result, researchers have devised a number of memory optimization methods (MOMs) to alleviate the memory bottleneck, such as gradient checkpointing, quantization, and swapping. In this work, we study memory optimization methods and show that, although these strategies indeed lower peak memory usage, they can actually decrease training throughput by up to 9.3x. To provide practical guidelines for practitioners, we propose a simple but effective performance model PAPAYA to quantitatively explain the memory and training time trade-off. PAPAYA can be used to determine when to apply the various memory optimization methods in training different models. We outline the circumstances in which memory optimization techniques are more advantageous based on derived implications from PAPAYA. We assess the accuracy of PAPAYA and the derived implications on a variety of machine models, showing that it achieves over 0.97 R score on predicting the peak memory/throughput, and accurately predicts the effectiveness of MOMs across five evaluated models on vision and NLP tasks.
Existing analysis of AdaGrad and other adaptive methods for smooth convex optimization is typically for functions with bounded domain diameter. In unconstrained problems, previous works guarantee an asymptotic convergence rate without an explicit constant factor that holds true for the entire function class. Furthermore, in the stochastic setting, only a modified version of AdaGrad, different from the one commonly used in practice, in which the latest gradient is not used to update the stepsize, has been analyzed. Our paper aims at bridging these gaps and developing a deeper understanding of AdaGrad and its variants in the standard setting of smooth convex functions as well as the more general setting of quasar convex functions. First, we demonstrate new techniques to explicitly bound the convergence rate of the vanilla AdaGrad for unconstrained problems in both deterministic and stochastic settings. Second, we propose a variant of AdaGrad for which we can show the convergence of the last iterate, instead of the average iterate. Finally, we give new accelerated adaptive algorithms and their convergence guarantee in the deterministic setting with explicit dependency on the problem parameters, improving upon the asymptotic rate shown in previous works.
Modern AI practices all strive towards the same goal: better results. In the context of deep learning, the term "results" often refers to the achieved accuracy on a competitive problem set. In this paper, we adopt an idea from the emerging field of Green AI to consider energy consumption as a metric of equal importance to accuracy and to reduce any irrelevant tasks or energy usage. We examine the training stage of the deep learning pipeline from a sustainability perspective, through the study of hyperparameter tuning strategies and the model complexity, two factors vastly impacting the overall pipeline's energy consumption. First, we investigate the effectiveness of grid search, random search and Bayesian optimisation during hyperparameter tuning, and we find that Bayesian optimisation significantly dominates the other strategies. Furthermore, we analyse the architecture of convolutional neural networks with the energy consumption of three prominent layer types: convolutional, linear and ReLU layers. The results show that convolutional layers are the most computationally expensive by a strong margin. Additionally, we observe diminishing returns in accuracy for more energy-hungry models. The overall energy consumption of training can be halved by reducing the network complexity. In conclusion, we highlight innovative and promising energy-efficient practices for training deep learning models. To expand the application of Green AI, we advocate for a shift in the design of deep learning models, by considering the trade-off between energy efficiency and accuracy.
The design of complex self-organising systems producing life-like phenomena, such as the open-ended evolution of virtual creatures, is one of the main goals of artificial life. Lenia, a family of cellular automata (CA) generalizing Conway's Game of Life to continuous space, time and states, has attracted a lot of attention because of the wide diversity of self-organizing patterns it can generate. Among those, some spatially localized patterns (SLPs) resemble life-like artificial creatures and display complex behaviors. However, those creatures are found in only a small subspace of the Lenia parameter space and are not trivial to discover, necessitating advanced search algorithms. Furthermore, each of these creatures exist only in worlds governed by specific update rules and thus cannot interact in the same one. This paper proposes as mass-conservative extension of Lenia, called Flow Lenia, that solve both of these issues. We present experiments demonstrating its effectiveness in generating SLPs with complex behaviors and show that the update rule parameters can be optimized to generate SLPs showing behaviors of interest. Finally, we show that Flow Lenia enables the integration of the parameters of the CA update rules within the CA dynamics, making them dynamic and localized, allowing for multi-species simulations, with locally coherent update rules that define properties of the emerging creatures, and that can be mixed with neighbouring rules. We argue that this paves the way for the intrinsic evolution of self-organized artificial life forms within continuous CAs.
Sparse regression codes (SPARC) connect the sparse signal recovery framework of compressive sensing with error control coding techniques. SPARC encoding produces codewords which are \emph{sparse} linear combinations of columns of a dictionary matrix. SPARC decoding is accomplished using sparse signal recovery algorithms. We construct dictionary matrices using Gold codes and mutually unbiased bases and develop suitable generalizations of SPARC (GSPARC). We develop a greedy decoder, referred as match and decode (MAD) algorithm and provide its analytical noiseless recovery guarantees. We propose a parallel greedy search technique, referred as parallel MAD (PMAD), to improve the performance. We describe the applicability of GSPARC with PMAD decoder for multi-user channels, providing a non-orthogonal multiple access scheme. We present numerical results comparing the block error rate (BLER) performance of the proposed algorithms for GSPARC in AWGN channels, in the short block length regime. The PMAD decoder gives better BLER than the approximate message passing decoder for SPARC. GSPARC with PMAD gives comparable and competitive BLER performance, when compared to other existing codes. In multi-user channels, GSPARC with PMAD decoder outperforms the sphere packing lower bounds of an orthogonal multiple access scheme, which has the same spectral efficiency.
The conditional moment problem is a powerful formulation for describing structural causal parameters in terms of observables, a prominent example being instrumental variable regression. A standard approach reduces the problem to a finite set of marginal moment conditions and applies the optimally weighted generalized method of moments (OWGMM), but this requires we know a finite set of identifying moments, can still be inefficient even if identifying, or can be theoretically efficient but practically unwieldy if we use a growing sieve of moment conditions. Motivated by a variational minimax reformulation of OWGMM, we define a very general class of estimators for the conditional moment problem, which we term the variational method of moments (VMM) and which naturally enables controlling infinitely-many moments. We provide a detailed theoretical analysis of multiple VMM estimators, including ones based on kernel methods and neural nets, and provide conditions under which these are consistent, asymptotically normal, and semiparametrically efficient in the full conditional moment model. We additionally provide algorithms for valid statistical inference based on the same kind of variational reformulations, both for kernel- and neural-net-based varieties. Finally, we demonstrate the strong performance of our proposed estimation and inference algorithms in a detailed series of synthetic experiments.
Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.
Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.