亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Metaverse is a vast virtual environment parallel to the physical world in which users enjoy a variety of services acting as an avatar. To build a secure living habitat, it's vital to ensure the virtual-physical traceability that tracking a malicious player in the physical world via his avatars in virtual space. In this paper, we propose a two-factor authentication framework based on chameleon signature and biometric-based authentication. First, aiming at disguise in virtual space, we propose a chameleon collision signature algorithm to achieve the verifiability of the avatar's virtual identity. Second, facing at impersonation in physical world, we construct an avatar's identity model based on the player's biometric template and the chameleon key to realize the verifiability of the avatar's physical identity. Finally, we design two decentralized authentication protocols based on the avatar's identity model to ensure the consistency of the avatar's virtual and physical identities. Security analysis indicates that the proposed authentication framework guarantees the consistency and traceability of avatar's identity. Simulation experiments show that the framework not only completes the decentralized authentication between avatars but also achieves the virtual-physical tracking.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · INFORMS · 閉式 · · contrastive ·
2023 年 2 月 8 日

A near-field secure transmission framework is proposed. Employing the hybrid beamforming architecture, a base station (BS) transmits the confidential information to a legitimate user (U) against an eavesdropper (E) in the near field. A two-stage algorithm is proposed to maximize the near-field secrecy capacity. Based on the fully-digital beamformers obtained in the first stage, the optimal analog beamformers and baseband digital beamformers can be alternatingly derived in the closed-form expressions in the second stage. Numerical results demonstrate that in contrast to the far-field secure communication relying on the angular disparity, the near-filed secure communication in the near-field communication mainly relies on the distance disparity between U and E.

Event prediction is the ability of anticipating future events, i.e., future real-world occurrences, and aims to support the user in deciding on actions that change future events towards a desired state. An event prediction method learns the relation between features of past events and future events. It is applied to newly observed events to predict corresponding future events that are evaluated with respect to the user's desired future state. If the predicted future events do not comply with this state, actions are taken towards achieving desirable future states. Evidently, event prediction is valuable in many application domains such as business and natural disasters. The diversity of application domains results in a diverse range of methods that are scattered across various research areas which, in turn, use different terminology for event prediction methods. Consequently, sharing methods and knowledge for developing future event prediction methods is restricted. To facilitate knowledge sharing on account of a comprehensive classification, integration, and assessment of event prediction methods, we combine taxonomies and take a systems perspective to integrate event prediction methods into a single system, elicit requirements and assess existing work with respect to the requirements. Based on the assessment, we identify open challenges and discuss future research directions.

Covert communication is focused on hiding the mere existence of communication from unwanted listeners via the physical layer. In this work, we consider the problem of perfect covert communication in wireless networks. Specifically, harnessing an Intelligent Reflecting Surface (IRS), we turn our attention to schemes which allow the transmitter to completely hide the communication, with zero energy at the unwanted listener (Willie) and hence zero probability of detection. Applications of such schemes go beyond simple covertness, as we prevent detectability or decoding even when the codebook, timings and channel characteristics are known to Willie. That is, perfect covertness also ensures Willie is unable to decode, even assuming communication took place and knowing the codebook. We define perfect covertness, give a necessary and sufficient condition for it in IRS-assisted communication and define the optimization problem. For N = 2 IRS elements, we analyze the probability of finding a solution and derive its closed-form. We then investigate the problem of N > 2 IRS elements, by analyzing probability of such a zero-detection solution. We prove that this probability converge to 1 as the number of IRS tends to infinity. We provide an iterative algorithm to find a perfectly covert scheme and prove its convergence. The results are also supported by simulations, showing that a small amount of IRS elements allows for a positive rate at the legitimate user yet with zero probability of detection at an unwanted listener.

Blockchain has proven to be an emerging technology in the digital world, changing the way everyone thinks about data security and bringing efficiency to several industries. It has already been applied to a wide range of applications, from financial services and supply chain management to voting systems and identity verification. An organization must verify its candidates before selecting them. Choosing an unqualified candidate can ruin an organization's reputation. In this digital era, many key fraudulent schemes are rampant in many companies and one of them is certificate fraud. It is possible to validate a candidate's qualifications using traditional methods, but there are drawbacks such as security issues and time consumption. In this paper, a blockchain-based academic certificate authentication system will be used to ensure authenticity and make the assertion of the decentralized system secure. However, the system will generate, authenticate and make corrections on academic certificates. Ultimately, some blockchain-based authentication systems already exist, they can't correct any errors that occur during generation. The proposed system will help in many ways, such as providing a user-friendly university admission, and smooth job hiring process, etc. In conclusion, our proposed system can permanently eradicate certificate forgeries and create and promote trust in society.

Since the traffic administration at road intersections determines the capacity bottleneck of modern transportation systems, intelligent cooperative coordination for connected autonomous vehicles (CAVs) has shown to be an effective solution. In this paper, we try to formulate a Bi-Level CAV intersection coordination framework, where coordinators from High and Low levels are tightly coupled. In the High-Level coordinator where vehicles from multiple roads are involved, we take various metrics including throughput, safety, fairness and comfort into consideration. Motivated by the time consuming space-time resource allocation framework in [1], we try to give a low complexity solution by transforming the complicated original problem into a sequential linear programming one. Based on the "feasible tunnels" (FT) generated from the High-Level coordinator, we then propose a rapid gradient-based trajectory optimization strategy in the Low-Level planner, to effectively avoid collisions beyond High-level considerations, such as the pedestrian or bicycles. Simulation results and laboratory experiments show that our proposed method outperforms existing strategies. Moreover, the most impressive advantage is that the proposed strategy can plan vehicle trajectory in milliseconds, which is promising in realworld deployments. A detailed description include the coordination framework and experiment demo could be found at the supplement materials, or online at //youtu.be/MuhjhKfNIOg.

Algebraic effects and handlers are a powerful abstraction to build non-local control-flow mechanisms such as resumable exceptions, lightweight threads, co-routines, generators, and asynchronous I/O. All of such features have very evolved semantics, hence they pose very interesting challenges to deductive verification techniques. In fact, there are very few proposed techniques to deductively verify programs featuring these constructs, even fewer when it comes to automated proofs. In this paper, we outline some of the currently available techniques for the verification of programs with algebraic effects. We then build off them to create a mostly automated verification framework by extending Cameleer, a tool which verifies OCaml code using GOSPEL and Why3. This framework embeds the behavior of effects and handlers using exceptions and defunctionalized functions.

Digital avatars are an important part of identity representation, but there is little work on understanding how to represent disability. We interviewed 18 people with disabilities and related identities about their experiences and preferences in representing their identities with avatars. Participants generally preferred to represent their disability identity if the context felt safe and platforms supported their expression, as it was important for feeling authentically represented. They also utilized avatars in strategic ways: as a means to signal and disclose current abilities, access needs, and to raise awareness. Some participants even found avatars to be a more accessible way to communicate than alternatives. We discuss how avatars can support disability identity representation because of their easily customizable format that is not strictly tied to reality. We conclude with design recommendations for creating platforms that better support people in representing their disability and other minoritized identities.

The Metaverse is emerging as maturing technologies are empowering the different facets. Virtual Reality (VR) technologies serve as the backbone of the virtual universe within the Metaverse to offer a highly immersive user experience. As mobility is emphasized in the Metaverse context, VR devices reduce their weights at the sacrifice of local computation abilities. In this paper, for a system consisting of a Metaverse server and multiple VR users, we consider two cases of (i) the server generating frames and transmitting them to users, and (ii) users generating frames locally and thus consuming device energy. Moreover, in our multi-user VR scenario for the Metaverse, users have different characteristics and demands for Frames Per Second (FPS). Then the channel access arrangement (including the decisions on frame generation location), and transmission powers for the downlink communications from the server to the users are jointly optimized to improve the utilities of users. This joint optimization is addressed by deep reinforcement learning (DRL) with heterogeneous actions. Our proposed user-centric DRL algorithm is called User-centric Critic with Heterogenous Actors (UCHA). Extensive experiments demonstrate that our UCHA algorithm leads to remarkable results under various requirements and constraints.

A $0,1$ matrix is said to be regular if all of its rows and columns have the same number of ones. We prove that for infinitely many integers $k$, there exists a square regular $0,1$ matrix with binary rank $k$, such that the Boolean rank of its complement is $k^{\widetilde{\Omega}(\log k)}$. Equivalently, the ones in the matrix can be partitioned into $k$ combinatorial rectangles, whereas the number of rectangles needed for any cover of its zeros is $k^{\widetilde{\Omega}(\log k)}$. This settles, in a strong form, a question of Pullman (Linear Algebra Appl., 1988) and a conjecture of Hefner, Henson, Lundgren, and Maybee (Congr. Numer., 1990). The result can be viewed as a regular analogue of a recent result of Balodis, Ben-David, G\"{o}\"{o}s, Jain, and Kothari (FOCS, 2021), motivated by the clique vs. independent set problem in communication complexity and by the (disproved) Alon-Saks-Seymour conjecture in graph theory. As an application of the produced regular matrices, we obtain regular counterexamples to the Alon-Saks-Seymour conjecture and prove that for infinitely many integers $k$, there exists a regular graph with biclique partition number $k$ and chromatic number $k^{\widetilde{\Omega}(\log k)}$.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

北京阿比特科技有限公司