亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper explores active sensing strategies that employ vision-based tactile sensors for robotic perception and classification of fabric textures. We formalize the active sampling problem in the context of tactile fabric recognition and provide an implementation of information-theoretic exploration strategies based on minimizing predictive entropy and variance of probabilistic models. Through ablation studies and human experiments, we investigate which components are crucial for quick and reliable texture recognition. Along with the active sampling strategies, we evaluate neural network architectures, representations of uncertainty, influence of data augmentation, and dataset variability. By evaluating our method on a previously published Active Clothing Perception Dataset and on a real robotic system, we establish that the choice of the active exploration strategy has only a minor influence on the recognition accuracy, whereas data augmentation and dropout rate play a significantly larger role. In a comparison study, while humans achieve 66.9% recognition accuracy, our best approach reaches 90.0% in under 5 touches, highlighting that vision-based tactile sensors are highly effective for fabric texture recognition.

相關內容

 傳感器(英文名稱:transducer/sensor)是一種檢測裝置,能感受到被測量的信息,并能將感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。

A unified and versatile LiDAR segmentation model with strong robustness and generalizability is desirable for safe autonomous driving perception. This work presents M3Net, a one-of-a-kind framework for fulfilling multi-task, multi-dataset, multi-modality LiDAR segmentation in a universal manner using just a single set of parameters. To better exploit data volume and diversity, we first combine large-scale driving datasets acquired by different types of sensors from diverse scenes and then conduct alignments in three spaces, namely data, feature, and label spaces, during the training. As a result, M3Net is capable of taming heterogeneous data for training state-of-the-art LiDAR segmentation models. Extensive experiments on twelve LiDAR segmentation datasets verify our effectiveness. Notably, using a shared set of parameters, M3Net achieves 75.1%, 83.1%, and 72.4% mIoU scores, respectively, on the official benchmarks of SemanticKITTI, nuScenes, and Waymo Open.

Deformable object manipulation is a long-standing challenge in robotics. While existing approaches often focus narrowly on a specific type of object, we seek a general-purpose algorithm, capable of manipulating many different types of objects: beans, rope, cloth, liquid, . . . . One key difficulty is a suitable representation, rich enough to capture object shape, dynamics for manipulation and yet simple enough to be acquired effectively from sensor data. Specifically, we propose Differentiable Particles (DiPac), a new algorithm for deformable object manipulation. DiPac represents a deformable object as a set of particles and uses a differentiable particle dynamics simulator to reason about robot manipulation. To find the best manipulation action, DiPac combines learning, planning, and trajectory optimization through differentiable trajectory tree optimization. Differentiable dynamics provides significant benefits and enable DiPac to (i) estimate the dynamics parameters efficiently, thereby narrowing the sim-to-real gap, and (ii) choose the best action by backpropagating the gradient along sampled trajectories. Both simulation and real-robot experiments show promising results. DiPac handles a variety of object types. By combining planning and learning, DiPac outperforms both pure model-based planning methods and pure data-driven learning methods. In addition, DiPac is robust and adapts to changes in dynamics, thereby enabling the transfer of an expert policy from one object to another with different physical properties, e.g., from a rigid rod to a deformable rope.

This paper introduces a method of identifying a maximal set of safe strategies from data for stochastic systems with unknown dynamics using barrier certificates. The first step is learning the dynamics of the system via Gaussian process (GP) regression and obtaining probabilistic errors for this estimate. Then, we develop an algorithm for constructing piecewise stochastic barrier functions to find a maximal permissible strategy set using the learned GP model, which is based on sequentially pruning the worst controls until a maximal set is identified. The permissible strategies are guaranteed to maintain probabilistic safety for the true system. This is especially important for learning-enabled systems, because a rich strategy space enables additional data collection and complex behaviors while remaining safe. Case studies on linear and nonlinear systems demonstrate that increasing the size of the dataset for learning the system grows the permissible strategy set.

Despite great success in modeling visual perception, deep neural network based image quality assessment (IQA) still remains unreliable in real-world applications due to its vulnerability to adversarial perturbations and the inexplicit black-box structure. In this paper, we propose to build a trustworthy IQA model via Causal Perception inspired Representation Learning (CPRL), and a score reflection attack method for IQA model. More specifically, we assume that each image is composed of Causal Perception Representation (CPR) and non-causal perception representation (N-CPR). CPR serves as the causation of the subjective quality label, which is invariant to the imperceptible adversarial perturbations. Inversely, N-CPR presents spurious associations with the subjective quality label, which may significantly change with the adversarial perturbations. To extract the CPR from each input image, we develop a soft ranking based channel-wise activation function to mediate the causally sufficient (beneficial for high prediction accuracy) and necessary (beneficial for high robustness) deep features, and based on intervention employ minimax game to optimize. Experiments on four benchmark databases show that the proposed CPRL method outperforms many state-of-the-art adversarial defense methods and provides explicit model interpretation.

Modern graph representation learning works mostly under the assumption of dealing with regularly sampled temporal graph snapshots, which is far from realistic, e.g., social networks and physical systems are characterized by continuous dynamics and sporadic observations. To address this limitation, we introduce the Temporal Graph Ordinary Differential Equation (TG-ODE) framework, which learns both the temporal and spatial dynamics from graph streams where the intervals between observations are not regularly spaced. We empirically validate the proposed approach on several graph benchmarks, showing that TG-ODE can achieve state-of-the-art performance in irregular graph stream tasks.

This paper concerns the risk-aware control of stochastic systems with temporal logic specifications dynamically assigned during runtime. Conventional risk-aware control typically assumes that all specifications are predefined and remain unchanged during runtime. In this paper, we propose a novel, provably correct model predictive control scheme for linear systems with additive unbounded stochastic disturbances that dynamically evaluates the feasibility of runtime signal temporal logic specifications and automatically reschedules the control inputs accordingly. The control method guarantees the probabilistic satisfaction of newly accepted specifications without sacrificing the satisfaction of the previously accepted ones. The proposed control method is validated by a robotic motion planning case study.

This paper explores the impact of incorporating sentiment, emotion, and domain-specific lexicons into a transformer-based model for depression symptom estimation. Lexicon information is added by marking the words in the input transcripts of patient-therapist conversations as well as in social media posts. Overall results show that the introduction of external knowledge within pre-trained language models can be beneficial for prediction performance, while different lexicons show distinct behaviours depending on the targeted task. Additionally, new state-of-the-art results are obtained for the estimation of depression level over patient-therapist interviews.

This work designs and analyzes a novel set of algorithms for multi-agent reinforcement learning (MARL) based on the principle of information-directed sampling (IDS). These algorithms draw inspiration from foundational concepts in information theory, and are proven to be sample efficient in MARL settings such as two-player zero-sum Markov games (MGs) and multi-player general-sum MGs. For episodic two-player zero-sum MGs, we present three sample-efficient algorithms for learning Nash equilibrium. The basic algorithm, referred to as MAIDS, employs an asymmetric learning structure where the max-player first solves a minimax optimization problem based on the joint information ratio of the joint policy, and the min-player then minimizes the marginal information ratio with the max-player's policy fixed. Theoretical analyses show that it achieves a Bayesian regret of tilde{O}(sqrt{K}) for K episodes. To reduce the computational load of MAIDS, we develop an improved algorithm called Reg-MAIDS, which has the same Bayesian regret bound while enjoying less computational complexity. Moreover, by leveraging the flexibility of IDS principle in choosing the learning target, we propose two methods for constructing compressed environments based on rate-distortion theory, upon which we develop an algorithm Compressed-MAIDS wherein the learning target is a compressed environment. Finally, we extend Reg-MAIDS to multi-player general-sum MGs and prove that it can learn either the Nash equilibrium or coarse correlated equilibrium in a sample efficient manner.

The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources

This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.

北京阿比特科技有限公司