亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Innovative enhancement in embedded system platforms, specifically hardware accelerations, significantly influence the application of deep learning in real-world scenarios. These innovations translate human labor efforts into automated intelligent systems employed in various areas such as autonomous driving, robotics, Internet-of-Things (IoT), and numerous other impactful applications. NVIDIA's Jetson platform is one of the pioneers in offering optimal performance regarding energy efficiency and throughput in the execution of deep learning algorithms. Previously, most benchmarking analysis was based on 2D images with a single deep learning model for each comparison result. In this paper, we implement an end-to-end video-based crime-scene anomaly detection system inputting from surveillance videos and the system is deployed and completely operates on multiple Jetson edge devices (Nano, AGX Xavier, Orin Nano). The comparison analysis includes the integration of Torch-TensorRT as a software developer kit from NVIDIA for the model performance optimisation. The system is built based on the PySlowfast open-source project from Facebook as the coding template. The end-to-end system process comprises the videos from camera, data preprocessing pipeline, feature extractor and the anomaly detection. We provide the experience of an AI-based system deployment on various Jetson Edge devices with Docker technology. Regarding anomaly detectors, a weakly supervised video-based deep learning model called Robust Temporal Feature Magnitude Learning (RTFM) is applied in the system. The approach system reaches 47.56 frames per second (FPS) inference speed on a Jetson edge device with only 3.11 GB RAM usage total. We also discover the promising Jetson device that the AI system achieves 15% better performance than the previous version of Jetson devices while consuming 50% less energy power.

相關內容

Cooperative inference in Mobile Edge Computing (MEC), achieved by deploying partitioned Deep Neural Network (DNN) models between resource-constrained user equipments (UEs) and edge servers (ESs), has emerged as a promising paradigm. Firstly, we consider scenarios of continuous Artificial Intelligence (AI) task arrivals, like the object detection for video streams, and utilize a serial queuing model for the accurate evaluation of End-to-End (E2E) delay in cooperative edge inference. Secondly, to enhance the long-term performance of inference systems, we formulate a multi-slot stochastic E2E delay optimization problem that jointly considers model partitioning and multi-dimensional resource allocation. Finally, to solve this problem, we introduce a Lyapunov-guided Multi-Dimensional Optimization algorithm (LyMDO) that decouples the original problem into per-slot deterministic problems, where Deep Reinforcement Learning (DRL) and convex optimization are used for joint optimization of partitioning decisions and complementary resource allocation. Simulation results show that our approach effectively improves E2E delay while balancing long-term resource constraints.

As the current detection solutions of distributed denial of service attacks (DDoS) need additional infrastructures to handle high aggregate data rates, they are not suitable for sensor networks or the Internet of Things. Besides, the security architecture of software-defined sensor networks needs to pay attention to the vulnerabilities of both software-defined networks and sensor networks. In this paper, we propose a network-aware automated machine learning (AutoML) framework which detects DDoS attacks in software-defined sensor networks. Our framework selects an ideal machine learning algorithm to detect DDoS attacks in network-constrained environments, using metrics such as variable traffic load, heterogeneous traffic rate, and detection time while preventing over-fitting. Our contributions are two-fold: (i) we first investigate the trade-off between the efficiency of ML algorithms and network/traffic state in the scope of DDoS detection. (ii) we design and implement a software architecture containing open-source network tools, with the deployment of multiple ML algorithms. Lastly, we show that under the denial of service attacks, our framework ensures the traffic packets are still delivered within the network with additional delays.

Covariate shift occurs prevalently in practice, where the input distributions of the source and target data are substantially different. Despite its practical importance in various learning problems, most of the existing methods only focus on some specific learning tasks and are not well validated theoretically and numerically. To tackle this problem, we propose a unified analysis of general nonparametric methods in a reproducing kernel Hilbert space (RKHS) under covariate shift. Our theoretical results are established for a general loss belonging to a rich loss function family, which includes many commonly used methods as special cases, such as mean regression, quantile regression, likelihood-based classification, and margin-based classification. Two types of covariate shift problems are the focus of this paper and the sharp convergence rates are established for a general loss function to provide a unified theoretical analysis, which concurs with the optimal results in literature where the squared loss is used. Extensive numerical studies on synthetic and real examples confirm our theoretical findings and further illustrate the effectiveness of our proposed method.

Recent advances in whole-slide image (WSI) scanners and computational capabilities have significantly propelled the application of artificial intelligence in histopathology slide analysis. While these strides are promising, current supervised learning approaches for WSI analysis come with the challenge of exhaustively labeling high-resolution slides - a process that is both labor-intensive and time-consuming. In contrast, self-supervised learning (SSL) pretraining strategies are emerging as a viable alternative, given that they don't rely on explicit data annotations. These SSL strategies are quickly bridging the performance disparity with their supervised counterparts. In this context, we introduce an SSL framework. This framework aims for transferable representation learning and semantically meaningful clustering by synergizing invariance loss and clustering loss in WSI analysis. Notably, our approach outperforms common SSL methods in downstream classification and clustering tasks, as evidenced by tests on the Camelyon16 and a pancreatic cancer dataset. The code and additional details are accessible at: //github.com/wwyi1828/CluSiam.

Explainable recommender systems (RS) have traditionally followed a one-size-fits-all approach, delivering the same explanation level of detail to each user, without considering their individual needs and goals. Further, explanations in RS have so far been presented mostly in a static and non-interactive manner. To fill these research gaps, we aim in this paper to adopt a user-centered, interactive explanation model that provides explanations with different levels of detail and empowers users to interact with, control, and personalize the explanations based on their needs and preferences. We followed a user-centered approach to design interactive explanations with three levels of detail (basic, intermediate, and advanced) and implemented them in the transparent Recommendation and Interest Modeling Application (RIMA). We conducted a qualitative user study (N=14) to investigate the impact of providing interactive explanations with varying level of details on the users' perception of the explainable RS. Our study showed qualitative evidence that fostering interaction and giving users control in deciding which explanation they would like to see can meet the demands of users with different needs, preferences, and goals, and consequently can have positive effects on different crucial aspects in explainable recommendation, including transparency, trust, satisfaction, and user experience.

We propose a dependence-aware predictive modeling framework for multivariate risks stemmed from an insurance contract with bundling features - an important type of policy increasingly offered by major insurance companies. The bundling feature naturally leads to longitudinal measurements of multiple insurance risks, and correct pricing and management of such risks is of fundamental interest to financial stability of the macroeconomy. We build a novel predictive model that fully captures the dependence among the multivariate repeated risk measurements. Specifically, the longitudinal measurement of each individual risk is first modeled using pair copula construction with a D-vine structure, and the multiple D-vines are then integrated by a flexible copula. The proposed model provides a unified modeling framework for multivariate longitudinal data that can accommodate different scales of measurements, including continuous, discrete, and mixed observations, and thus can be potentially useful for various economic studies. A computationally efficient sequential method is proposed for model estimation and inference, and its performance is investigated both theoretically and via simulation studies. In the application, we examine multivariate bundled risks in multi-peril property insurance using proprietary data from a commercial property insurance provider. The proposed model is found to provide improved decision making for several key insurance operations. For underwriting, we show that the experience rate priced by the proposed model leads to a 9% lift in the insurer's net revenue. For reinsurance, we show that the insurer underestimates the risk of the retained insurance portfolio by 10% when ignoring the dependence among bundled insurance risks.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司