A new conservative finite element solver for the three-dimensional steady magnetohydrodynamic (MHD) kinematics equations is presented.The solver utilizes magnetic vector potential and current density as solution variables, which are discretized by H(curl)-conforming edge-element and H(div)-conforming face element respectively. As a result, the divergence-free constraints of discrete current density and magnetic induction are both satisfied. Moreover the solutions also preserve the total magnetic helicity. The generated linear algebraic equation is a typical dual saddle-point problem that is ill-conditioned and indefinite. To efficiently solve it, we develop a block preconditioner based on constraint preconditioning framework and devise a preconditioned FGMRES solver. Numerical experiments verify the conservative properties, the convergence rate of the discrete solutions and the robustness of the preconditioner.
Functional constrained optimization is becoming more and more important in machine learning and operations research. Such problems have potential applications in risk-averse machine learning, semisupervised learning, and robust optimization among others. In this paper, we first present a novel Constraint Extrapolation (ConEx) method for solving convex functional constrained problems, which utilizes linear approximations of the constraint functions to define the extrapolation (or acceleration) step. We show that this method is a unified algorithm that achieves the best-known rate of convergence for solving different functional constrained convex composite problems, including convex or strongly convex, and smooth or nonsmooth problems with a stochastic objective and/or stochastic constraints. Many of these rates of convergence were in fact obtained for the first time in the literature. In addition, ConEx is a single-loop algorithm that does not involve any penalty subproblems. Contrary to existing primal-dual methods, it does not require the projection of Lagrangian multipliers into a (possibly unknown) bounded set. Second, for nonconvex functional constrained problems, we introduce a new proximal point method that transforms the initial nonconvex problem into a sequence of convex problems by adding quadratic terms to both the objective and constraints. Under a certain MFCQ-type assumption, we establish the convergence and rate of convergence of this method to KKT points when the convex subproblems are solved exactly or inexactly. For large-scale and stochastic problems, we present a more practical proximal point method in which the approximate solutions of the subproblems are computed by the aforementioned ConEx method. To the best of our knowledge, most of these convergence and complexity results of the proximal point method for nonconvex problems also seem to be new in the literature.
We consider the problem of finding nearly optimal solutions of optimization problems with random objective functions. Two concrete problems we consider are (a) optimizing the Hamiltonian of a spherical or Ising $p$-spin glass model, and (b) finding a large independent set in a sparse Erd\H{o}s-R\'{e}nyi graph. The following families of algorithms are considered: (a) low-degree polynomials of the input; (b) low-depth Boolean circuits; (c) the Langevin dynamics algorithm. We show that these families of algorithms fail to produce nearly optimal solutions with high probability. For the case of Boolean circuits, our results improve the state-of-the-art bounds known in circuit complexity theory (although we consider the search problem as opposed to the decision problem). Our proof uses the fact that these models are known to exhibit a variant of the overlap gap property (OGP) of near-optimal solutions. Specifically, for both models, every two solutions whose objectives are above a certain threshold are either close or far from each other. The crux of our proof is that the classes of algorithms we consider exhibit a form of stability. We show by an interpolation argument that stable algorithms cannot overcome the OGP barrier. The stability of Langevin dynamics is an immediate consequence of the well-posedness of stochastic differential equations. The stability of low-degree polynomials and Boolean circuits is established using tools from Gaussian and Boolean analysis -- namely hypercontractivity and total influence, as well as a novel lower bound for random walks avoiding certain subsets. In the case of Boolean circuits, the result also makes use of Linal-Mansour-Nisan's classical theorem. Our techniques apply more broadly to low influence functions and may apply more generally.
Data assimilation algorithms combine information from observations and prior model information to obtain the most likely state of a dynamical system. The linearised weak-constraint four-dimensional variational assimilation problem can be reformulated as a saddle point problem, in order to exploit highly parallel modern computer architectures. In this setting, the choice of preconditioner is crucial to ensure fast convergence and retain the inherent parallelism of the saddle point formulation. We propose new preconditioning approaches for the model term and observation error covariance term which lead to fast convergence of preconditioned Krylov subspace methods, and many of these suggested approximations are highly parallelisable. In particular our novel approach includes model information in the model term within the preconditioner, which to our knowledge has not previously been considered for data assimilation problems. We develop new theory demonstrating the effectiveness of the new preconditioners. Linear and non-linear numerical experiments reveal that our new approach leads to faster convergence than existing state-of-the-art preconditioners for a broader range of problems than indicated by the theory alone. We present a range of numerical experiments performed in serial, with further improvements expected if the highly parallelisable nature of the preconditioners is exploited.
The $P_1$--nonconforming quadrilateral finite element space with periodic boundary condition is investigated. The dimension and basis for the space are characterized with the concept of minimally essential discrete boundary conditions. We show that the situation is totally different based on the parity of the number of discretization on coordinates. Based on the analysis on the space, we propose several numerical schemes for elliptic problems with periodic boundary condition. Some of these numerical schemes are related with solving a linear equation consisting of a non-invertible matrix. By courtesy of the Drazin inverse, the existence of corresponding numerical solutions is guaranteed. The theoretical relation between the numerical solutions is derived, and it is confirmed by numerical results. Finally, the extension to the three dimensional is provided.
In this paper, we propose a variationally consistent technique for decreasing the maximum eigenfrequencies of structural dynamics related finite element formulations. Our approach is based on adding a symmetric positive-definite term to the mass matrix that follows from the integral of the traction jump across element boundaries. The added term is weighted by a small factor, for which we derive a suitable, and simple, element-local parameter choice. For linear problems, we show that our mass-scaling method produces no adverse effects in terms of spatial accuracy and orders of convergence. We illustrate these properties in one, two and three spatial dimension, for quadrilateral elements and triangular elements, and for up to fourth order polynomials basis functions. To extend the method to non-linear problems, we introduce a linear approximation and show that a sizeable increase in critical time-step size can be achieved while only causing minor (even beneficial) influences on the dynamic response.
We study the implicit upwind finite volume scheme for numerically approximating the advection-diffusion equation with a vector field in the low regularity DiPerna-Lions setting. That is, we are concerned with advecting velocity fields that are spatially Sobolev regular and data that are merely integrable. We study the implicit upwind finite volume scheme for numerically approximating the advection-diffusion equation with a vector field in the low regularity DiPerna-Lions setting. We prove that on unstructured regular meshes the rate of convergence of approximate solutions generated by the upwind scheme towards the unique solution of the continuous model is at least one. The numerical error is estimated in terms of logarithmic Kantorovich-Rubinstein distances and provides thus a bound on the rate of weak convergence.
In this paper, we propose a conservative low rank tensor method to approximate nonlinear Vlasov solutions. The low rank approach is based on our earlier work (arxiv: 2106.08834). It takes advantage of the fact that the differential operators in the Vlasov equation are tensor friendly, based on which we propose to dynamically and adaptively build up low rank solution basis by adding new basis functions from discretization of the differential equation, and removing basis from a singular value decomposition (SVD)-type truncation procedure. For the discretization, we adopt a high order finite difference spatial discretization together with a second order strong stability preserving multi-step time discretization. While the SVD truncation will remove the redundancy in representing the high dimensional Vlasov solution, it will destroy the conservation properties of the associated full conservative scheme. In this paper, we develop a conservative truncation procedure with conservation of mass, momentum and kinetic energy densities. The conservative truncation is achieved by an orthogonal projection onto a subspace spanned by $1$, $v$ and $v^2$ in the velocity space associated with a weighted inner product. Then the algorithm performs a weighted SVD truncation of the remainder, which involves a scaling, followed by the standard SVD truncation and rescaling back. The algorithm is further developed in high dimensions with hierarchical Tucker tensor decomposition of high dimensional Vlasov solutions, overcoming the curse of dimensionality. An extensive set of nonlinear Vlasov examples are performed to show the effectiveness and conservation property of proposed conservative low rank approach. Comparison is performed against the non-conservative low rank tensor approach on conservation history of mass, momentum and energy.
In this paper we present a method for the solution of $\ell_1$-regularized convex quadratic optimization problems. It is derived by suitably combining a proximal method of multipliers strategy with a semi-smooth Newton method. The resulting linear systems are solved using a Krylov-subspace method, accelerated by appropriate general-purpose preconditioners, which are shown to be optimal with respect to the proximal parameters. Practical efficiency is further improved by warm-starting the algorithm using a proximal alternating direction method of multipliers. We show that the method achieves global convergence under feasibility assumptions. Furthermore, under additional standard assumptions, the method can achieve global linear and local superlinear convergence. The effectiveness of the approach is numerically demonstrated on $L^1$-regularized PDE-constrained optimization problems.
In this work, we propose a simple yet generic preconditioned Krylov subspace method for a large class of nonsymmetric block Toeplitz all-at-once systems arising from discretizing evolutionary partial differential equations. Namely, our main result is a novel symmetric positive definite preconditioner, which can be efficiently diagonalized by the discrete sine transform matrix. More specifically, our approach is to first permute the original linear system to obtain a symmetric one, and subsequently develop a desired preconditioner based on the spectral symbol of the modified matrix. Then, we show that the eigenvalues of the preconditioned matrix sequences are clustered around $\pm 1$, which entails rapid convergence, when the minimal residual method is devised. Alternatively, when the conjugate gradient method on normal equations is used, we show that our preconditioner is effective in the sense that the eigenvalues of the preconditioned matrix sequence are clustered around the unity. An extension of our proposed preconditioned method is given for high-order backward difference time discretization schemes, which applies on a wide range of time-dependent equations. Numerical examples are given to demonstrate the effectiveness of our proposed preconditioner, which consistently outperforms an existing block circulant preconditioner discussed in the relevant literature.
Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an attempt along this line by reformulating the training procedure from the trajectory optimization perspective. We first show that most widely-used algorithms for training DNNs can be linked to the Differential Dynamic Programming (DDP), a celebrated second-order trajectory optimization algorithm rooted in the Approximate Dynamic Programming. In this vein, we propose a new variant of DDP that can accept batch optimization for training feedforward networks, while integrating naturally with the recent progress in curvature approximation. The resulting algorithm features layer-wise feedback policies which improve convergence rate and reduce sensitivity to hyper-parameter over existing methods. We show that the algorithm is competitive against state-ofthe-art first and second order methods. Our work opens up new avenues for principled algorithmic design built upon the optimal control theory.