亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For an integer $b \ge 1$, a $b$-matching (resp. $b$-edge cover) of a graph $G=(V,E)$ is a subset $S\subseteq E$ of edges such that every vertex is incident with at most (resp. at least) $b$ edges from $S$. We prove that for any $b \ge 1$ the simple Glauber dynamics for sampling (weighted) $b$-matchings and $b$-edge covers mixes in $O(n\log n)$ time on all $n$-vertex bounded-degree graphs. This significantly improves upon previous results which have worse running time and only work for $b$-matchings with $b \le 7$ and for $b$-edge covers with $b \le 2$. More generally, we prove spectral independence for a broad class of binary symmetric Holant problems with log-concave signatures, including $b$-matchings, $b$-edge covers, and antiferromagnetic $2$-spin edge models. We hence deduce optimal mixing time of the Glauber dynamics from spectral independence. The core of our proof is a recursive coupling inspired by (Chen and Zhang '23) which upper bounds the Wasserstein $W_1$ distance between distributions under different pinnings. Using a similar method, we also obtain the optimal $O(n\log n)$ mixing time of the Glauber dynamics for the hardcore model on $n$-vertex bounded-degree claw-free graphs, for any fugacity $\lambda$. This improves over previous works which have at least cubic dependence on $n$.

相關內容

The persistent and switchable polarization of ferroelectric materials based on HfO$_2$-based ferroelectric compounds, compatible with large-scale integration, are attractive synaptic elements for neuromorphic computing. To achieve a record current density of 0.01 A/cm$^2$ (at a read voltage of 80 mV) as well as ideal memristive behavior (linear current-voltage relation and analog resistive switching), devices based on an ultra-thin (2.7 nm thick), polycrystalline HfZrO$_4$ ferroelectric layer are fabricated by Atomic Layer Deposition. The use of a semiconducting oxide interlayer (WO$_{x<3}$) at one of the interfaces, induces an asymmetric energy profile upon ferroelectric polarization reversal and thus the long-term potentiation / depression (conductance increase / decrease) of interest. Moreover, it favors the stable retention of both the low and the high resistive states. Thanks to the low operating voltage (<3.5 V), programming requires less than 10${^-12}$ J for 20 ns long pulses. Remarkably, the memristors show no wake-up or fatigue effect.

The problem of non-monotone $k$-submodular maximization under a knapsack constraint ($\kSMK$) over the ground set size $n$ has been raised in many applications in machine learning, such as data summarization, information propagation, etc. However, existing algorithms for the problem are facing questioning of how to overcome the non-monotone case and how to fast return a good solution in case of the big size of data. This paper introduces two deterministic approximation algorithms for the problem that competitively improve the query complexity of existing algorithms. Our first algorithm, $\LAA$, returns an approximation ratio of $1/19$ within $O(nk)$ query complexity. The second one, $\RLA$, improves the approximation ratio to $1/5-\epsilon$ in $O(nk)$ queries, where $\epsilon$ is an input parameter. Our algorithms are the first ones that provide constant approximation ratios within only $O(nk)$ query complexity for the non-monotone objective. They, therefore, need fewer the number of queries than state-of-the-the-art ones by a factor of $\Omega(\log n)$. Besides the theoretical analysis, we have evaluated our proposed ones with several experiments in some instances: Influence Maximization and Sensor Placement for the problem. The results confirm that our algorithms ensure theoretical quality as the cutting-edge techniques and significantly reduce the number of queries.

The coalgebraic $\mu$-calculus provides a generic semantic framework for fixpoint logics over systems whose branching type goes beyond the standard relational setup, e.g. probabilistic, weighted, or game-based. Previous work on the coalgebraic $\mu$-calculus includes an exponential-time upper bound on satisfiability checking, which however relies on the availability of tableau rules for the next-step modalities that are sufficiently well-behaved in a formally defined sense; in particular, rule matches need to be representable by polynomial-sized codes, and the sequent duals of the rules need to absorb cut. While such rule sets have been identified for some important cases, they are not known to exist in all cases of interest, in particular ones involving either integer weights as in the graded $\mu$-calculus, or real-valued weights in combination with non-linear arithmetic. In the present work, we prove the same upper complexity bound under more general assumptions, specifically regarding the complexity of the (much simpler) satisfiability problem for the underlying one-step logic, roughly described as the nesting-free next-step fragment of the logic. The bound is realized by a generic global caching algorithm that supports on-the-fly satisfiability checking. Notably, our approach directly accommodates unguarded formulae, and thus avoids use of the guardedness transformation. Example applications include new exponential-time upper bounds for satisfiability checking in an extension of the graded $\mu$-calculus with polynomial inequalities (including positive Presburger arithmetic), as well as an extension of the (two-valued) probabilistic $\mu$-calculus with polynomial inequalities.

The celebrated notion of important separators bounds the number of small $(S,T)$-separators in a graph which are 'farthest from $S$' in a technical sense. In this paper, we introduce a generalization of this powerful algorithmic primitive that is phrased in terms of $k$-secluded vertex sets: sets with an open neighborhood of size at most $k$. In this terminology, the bound on important separators says that there are at most $4^k$ maximal $k$-secluded connected vertex sets $C$ containing $S$ but disjoint from $T$. We generalize this statement significantly: even when we demand that $G[C]$ avoids a finite set $\mathcal{F}$ of forbidden induced subgraphs, the number of such maximal subgraphs is $2^{O(k)}$ and they can be enumerated efficiently. This allows us to make significant improvements for two problems from the literature. Our first application concerns the 'Connected $k$-Secluded $\mathcal{F}$-free subgraph' problem, where $\mathcal{F}$ is a finite set of forbidden induced subgraphs. Given a graph in which each vertex has a positive integer weight, the problem asks to find a maximum-weight connected $k$-secluded vertex set $C \subseteq V(G)$ such that $G[C]$ does not contain an induced subgraph isomorphic to any $F \in \mathcal{F}$. The parameterization by $k$ is known to be solvable in triple-exponential time via the technique of recursive understanding, which we improve to single-exponential. Our second application concerns the deletion problem to scattered graph classes. Here, the task is to find a vertex set of size at most $k$ whose removal yields a graph whose each connected component belongs to one of the prescribed graph classes $\Pi_1, \ldots, \Pi_d$. We obtain a single-exponential algorithm whenever each class $\Pi_i$ is characterized by a finite number of forbidden induced subgraphs. This generalizes and improves upon earlier results in the literature.

We present C$\cdot$ASE, an efficient and effective framework that learns conditional Adversarial Skill Embeddings for physics-based characters. Our physically simulated character can learn a diverse repertoire of skills while providing controllability in the form of direct manipulation of the skills to be performed. C$\cdot$ASE divides the heterogeneous skill motions into distinct subsets containing homogeneous samples for training a low-level conditional model to learn conditional behavior distribution. The skill-conditioned imitation learning naturally offers explicit control over the character's skills after training. The training course incorporates the focal skill sampling, skeletal residual forces, and element-wise feature masking to balance diverse skills of varying complexities, mitigate dynamics mismatch to master agile motions and capture more general behavior characteristics, respectively. Once trained, the conditional model can produce highly diverse and realistic skills, outperforming state-of-the-art models, and can be repurposed in various downstream tasks. In particular, the explicit skill control handle allows a high-level policy or user to direct the character with desired skill specifications, which we demonstrate is advantageous for interactive character animation.

We explicitly construct the first nontrivial extractors for degree $d \ge 2$ polynomial sources over $\mathbb{F}_2^n$. Our extractor requires min-entropy $k\geq n - \frac{\sqrt{\log n}}{(d\log \log n)^{d/2}}$. Previously, no constructions were known, even for min-entropy $k\geq n-1$. A key ingredient in our construction is an input reduction lemma, which allows us to assume that any polynomial source with min-entropy $k$ can be generated by $O(k)$ uniformly random bits. We also provide strong formal evidence that polynomial sources are unusually challenging to extract from, by showing that even our most powerful general purpose extractors cannot handle polynomial sources with min-entropy below $k\geq n-o(n)$. In more detail, we show that sumset extractors cannot even disperse from degree $2$ polynomial sources with min-entropy $k\geq n-O(n/\log\log n)$. In fact, this impossibility result even holds for a more specialized family of sources that we introduce, called polynomial non-oblivious bit-fixing (NOBF) sources. Polynomial NOBF sources are a natural new family of algebraic sources that lie at the intersection of polynomial and variety sources, and thus our impossibility result applies to both of these classical settings. This is especially surprising, since we do have variety extractors that slightly beat this barrier - implying that sumset extractors are not a panacea in the world of seedless extraction.

The arithmetic crosscorrelation of binary $m$-sequences with coprime periods $2^{n_1}-1$ and $2^{n_2}-1$\ ($\gcd(n_1,n_2)=1$) is determined. The result shows that the absolute value of arithmetic crosscorrelation of such binary $m$-sequences is not greater than $2^{\min(n_1,n_2)}-1$.

Many real-world datasets live on high-dimensional Stiefel and Grassmannian manifolds, $V_k(\mathbb{R}^N)$ and $Gr(k, \mathbb{R}^N)$ respectively, and benefit from projection onto lower-dimensional Stiefel (respectively, Grassmannian) manifolds. In this work, we propose an algorithm called Principal Stiefel Coordinates (PSC) to reduce data dimensionality from $ V_k(\mathbb{R}^N)$ to $V_k(\mathbb{R}^n)$ in an $O(k)$-equivariant manner ($k \leq n \ll N$). We begin by observing that each element $\alpha \in V_n(\mathbb{R}^N)$ defines an isometric embedding of $V_k(\mathbb{R}^n)$ into $V_k(\mathbb{R}^N)$. Next, we optimize for such an embedding map that minimizes data fit error by warm-starting with the output of principal component analysis (PCA) and applying gradient descent. Then, we define a continuous and $O(k)$-equivariant map $\pi_\alpha$ that acts as a ``closest point operator'' to project the data onto the image of $V_k(\mathbb{R}^n)$ in $V_k(\mathbb{R}^N)$ under the embedding determined by $\alpha$, while minimizing distortion. Because this dimensionality reduction is $O(k)$-equivariant, these results extend to Grassmannian manifolds as well. Lastly, we show that the PCA output globally minimizes projection error in a noiseless setting, but that our algorithm achieves a meaningfully different and improved outcome when the data does not lie exactly on the image of a linearly embedded lower-dimensional Stiefel manifold as above. Multiple numerical experiments using synthetic and real-world data are performed.

We compute the weight distribution of the ${\mathcal R} (4,9)$ by combining the approach described in D. V. Sarwate's Ph.D. thesis from 1973 with knowledge on the affine equivalence classification of Boolean functions. To solve this problem posed, e.g., in the MacWilliams and Sloane book [p. 447], we apply a refined approach based on the classification of Boolean quartic forms in $8$ variables due to Ph. Langevin and G. Leander, and recent results on the classification of the quotient space ${\mathcal R} (4,7)/{\mathcal R} (2,7)$ due to V. Gillot and Ph. Langevin.

We provide a simple $(1-O(\frac{1}{\sqrt{k}}))$-selectable Online Contention Resolution Scheme for $k$-uniform matroids against a fixed-order adversary. If $A_i$ and $G_i$ denote the set of selected elements and the set of realized active elements among the first $i$ (respectively), our algorithm selects with probability $1-\frac{1}{\sqrt{k}}$ any active element $i$ such that $|A_{i-1}| + 1 \leq (1-\frac{1}{\sqrt{k}})\cdot \mathbb{E}[|G_i|]+\sqrt{k}$. This implies a $(1-O(\frac{1}{\sqrt{k}}))$ prophet inequality against fixed-order adversaries for $k$-uniform matroids that is considerably simpler than previous algorithms [Ala14, AKW14, JMZ22]. We also prove that no OCRS can be $(1-\Omega(\sqrt{\frac{\log k}{k}}))$-selectable for $k$-uniform matroids against an almighty adversary. This guarantee is matched by the (known) simple greedy algorithm that accepts every active element with probability $1-\Theta(\sqrt{\frac{\log k}{k}})$ [HKS07].

北京阿比特科技有限公司