The celebrated notion of important separators bounds the number of small $(S,T)$-separators in a graph which are 'farthest from $S$' in a technical sense. In this paper, we introduce a generalization of this powerful algorithmic primitive that is phrased in terms of $k$-secluded vertex sets: sets with an open neighborhood of size at most $k$. In this terminology, the bound on important separators says that there are at most $4^k$ maximal $k$-secluded connected vertex sets $C$ containing $S$ but disjoint from $T$. We generalize this statement significantly: even when we demand that $G[C]$ avoids a finite set $\mathcal{F}$ of forbidden induced subgraphs, the number of such maximal subgraphs is $2^{O(k)}$ and they can be enumerated efficiently. This allows us to make significant improvements for two problems from the literature. Our first application concerns the 'Connected $k$-Secluded $\mathcal{F}$-free subgraph' problem, where $\mathcal{F}$ is a finite set of forbidden induced subgraphs. Given a graph in which each vertex has a positive integer weight, the problem asks to find a maximum-weight connected $k$-secluded vertex set $C \subseteq V(G)$ such that $G[C]$ does not contain an induced subgraph isomorphic to any $F \in \mathcal{F}$. The parameterization by $k$ is known to be solvable in triple-exponential time via the technique of recursive understanding, which we improve to single-exponential. Our second application concerns the deletion problem to scattered graph classes. Here, the task is to find a vertex set of size at most $k$ whose removal yields a graph whose each connected component belongs to one of the prescribed graph classes $\Pi_1, \ldots, \Pi_d$. We obtain a single-exponential algorithm whenever each class $\Pi_i$ is characterized by a finite number of forbidden induced subgraphs. This generalizes and improves upon earlier results in the literature.
We design and implement two single-pass semi-streaming algorithms for the maximum weight $k$-disjoint matching ($k$-DM) problem. Given an integer $k$, the $k$-DM problem is to find $k$ pairwise edge-disjoint matchings such that the sum of the weights of the matchings is maximized. For $k \geq 2$, this problem is NP-hard. Our first algorithm is based on the primal-dual framework of a linear programming relaxation of the problem and is $\frac{1}{3+\varepsilon}$-approximate. We also develop an approximation preserving reduction from $k$-DM to the maximum weight $b$-matching problem. Leveraging this reduction and an existing semi-streaming $b$-matching algorithm, we design a $\frac{k}{(2+\varepsilon)(k+1)}$-approximate semi-streaming algorithm for $k$-DM. For any constant $\varepsilon > 0$, both of these algorithms require $O(nk \log_{1+\varepsilon}^2 n)$ bits of space. To the best of our knowledge, this is the first study of semi-streaming algorithms for the $k$-DM problem. We compare our two algorithms to state-of-the-art offline algorithms on 82 real-world and synthetic test problems. On the smaller instances, our streaming algorithms used significantly less memory (ranging from 6$\times$ to 114$\times$ less) and were faster in runtime than the offline algorithms. Our solutions were often within 5\% of the best weights from the offline algorithms. On a collection of six large graphs with a memory limit of 1 TB and with $k=8$, the offline algorithms terminated only on one graph (mycielskian20). The best offline algorithm on this instance required 640 GB of memory and 20 minutes to complete. In contrast, our slowest streaming algorithm for this instance took under four minutes and produced a matching that was 18\% better in weight, using only 1.4 GB of memory.
The hierarchical matrix ($\mathcal{H}^{2}$-matrix) formalism provides a way to reinterpret the Fast Multipole Method and related fast summation schemes in linear algebraic terms. The idea is to tessellate a matrix into blocks in such as way that each block is either small or of numerically low rank; this enables the storage of the matrix and the application of it to a vector in linear or close to linear complexity. A key motivation for the reformulation is to extend the range of dense matrices that can be represented. Additionally, $\mathcal{H}^{2}$-matrices in principle also extend the range of operations that can be executed to include matrix inversion and factorization. While such algorithms can be highly efficient for certain specialized formats (such as HBS/HSS matrices based on ``weak admissibility''), inversion algorithms for general $\mathcal{H}^{2}$-matrices tend to be based on nested recursions and recompressions, making them challenging to implement efficiently. An exception is the \textit{strong recursive skeletonization (SRS)} algorithm by Minden, Ho, Damle, and Ying, which involves a simpler algorithmic flow. However, SRS greatly increases the number of blocks of the matrix that need to be stored explicitly, leading to high memory requirements. This manuscript presents the \textit{randomized strong recursive skeletonization (RSRS)} algorithm, which is a reformulation of SRS that incorporates the randomized SVD (RSVD) to simultaneously compress and factorize an $\mathcal{H}^{2}$-matrix. RSRS is a ``black box'' algorithm that interacts with the matrix to be compressed only via its action on vectors; this extends the range of the SRS algorithm (which relied on the ``proxy source'' compression technique) to include dense matrices that arise in sparse direct solvers.
We present a novel stochastic variational Gaussian process ($\mathcal{GP}$) inference method, based on a posterior over a learnable set of weighted pseudo input-output points (coresets). Instead of a free-form variational family, the proposed coreset-based, variational tempered family for $\mathcal{GP}$s (CVTGP) is defined in terms of the $\mathcal{GP}$ prior and the data-likelihood; hence, accommodating the modeling inductive biases. We derive CVTGP's lower bound for the log-marginal likelihood via marginalization of the proposed posterior over latent $\mathcal{GP}$ coreset variables, and show it is amenable to stochastic optimization. CVTGP reduces the learnable parameter size to $\mathcal{O}(M)$, enjoys numerical stability, and maintains $\mathcal{O}(M^3)$ time- and $\mathcal{O}(M^2)$ space-complexity, by leveraging a coreset-based tempered posterior that, in turn, provides sparse and explainable representations of the data. Results on simulated and real-world regression problems with Gaussian observation noise validate that CVTGP provides better evidence lower-bound estimates and predictive root mean squared error than alternative stochastic $\mathcal{GP}$ inference methods.
This spreading of prion proteins is at the basis of brain neurodegeneration. This paper deals with the numerical modelling of the misfolding process of $\alpha$-synuclein in Parkinson's disease. We introduce and analyze a discontinuous Galerkin method for the semi-discrete approximation of the Fisher-Kolmogorov (FK) equation that can be employed to model the process. We employ a discontinuous Galerkin method on polygonal and polyhedral grids (PolyDG) for space discretization, to accurately simulate the wavefronts typically observed in the prionic spreading and we prove stability and a priori error estimates. Next, we use a Crank-Nicolson scheme to advance in time. For the numerical verification of our numerical model, we first consider a manufactured solution, and then we consider a case with wavefront propagation in two-dimensional polygonal grids. Next, we carry out a simulation of $\alpha$-synuclein spreading in a two-dimensional brain slice in the sagittal plane with a polygonal agglomerated grid that takes full advantage of the flexibility of PolyDG approximation. Finally, we present a simulation in a three-dimensional geometry reconstructed from magnetic resonance images of a patient's brain.
We study the maximum $s,t$-flow oracle problem on planar directed graphs where the goal is to design a data structure answering max $s,t$-flow value (or equivalently, min $s,t$-cut value) queries for arbitrary source-target pairs $(s,t)$. For the case of polynomially bounded integer edge capacities, we describe an exact max $s,t$-flow oracle with truly subquadratic space and preprocessing, and sublinear query time. Moreover, if $(1-\epsilon)$-approximate answers are acceptable, we obtain a static oracle with near-linear preprocessing and $\tilde{O}(n^{3/4})$ query time and a dynamic oracle supporting edge capacity updates and queries in $\tilde{O}(n^{6/7})$ worst-case time. To the best of our knowledge, for directed planar graphs, no (approximate) max $s,t$-flow oracles have been described even in the unweighted case, and only trivial tradeoffs involving either no preprocessing or precomputing all the $n^2$ possible answers have been known. One key technical tool we develop on the way is a sublinear (in the number of edges) algorithm for finding a negative cycle in so-called dense distance graphs. By plugging it in earlier frameworks, we obtain improved bounds for other fundamental problems on planar digraphs. In particular, we show: (1) a deterministic $O(n\log(nC))$ time algorithm for negatively-weighted SSSP in planar digraphs with integer edge weights at least $-C$. This improves upon the previously known bounds in the important case of weights polynomial in $n$, and (2) an improved $O(n\log{n})$ bound on finding a perfect matching in a bipartite planar graph.
This paper describes a purely functional library for computing level-$p$-complexity of Boolean functions, and applies it to two-level iterated majority. Boolean functions are simply functions from $n$ bits to one bit, and they can describe digital circuits, voting systems, etc. An example of a Boolean function is majority, which returns the value that has majority among the $n$ input bits for odd $n$. The complexity of a Boolean function $f$ measures the cost of evaluating it: how many bits of the input are needed to be certain about the result of $f$. There are many competing complexity measures but we focus on level-$p$-complexity -- a function of the probability $p$ that a bit is 1. The level-$p$-complexity $D_p(f)$ is the minimum expected cost when the input bits are independent and identically distributed with Bernoulli($p$) distribution. We specify the problem as choosing the minimum expected cost of all possible decision trees -- which directly translates to a clearly correct, but very inefficient implementation. The library uses thinning and memoization for efficiency and type classes for separation of concerns. The complexity is represented using (sets of) polynomials, and the order relation used for thinning is implemented using polynomial factorisation and root-counting. Finally we compute the complexity for two-level iterated majority and improve on an earlier result by J.~Jansson.
Given a vector dataset $\mathcal{X}$ and a query vector $\vec{x}_q$, graph-based Approximate Nearest Neighbor Search (ANNS) aims to build a graph index $G$ and approximately return vectors with minimum distances to $\vec{x}_q$ by searching over $G$. The main drawback of graph-based ANNS is that a graph index would be too large to fit into the memory especially for a large-scale $\mathcal{X}$. To solve this, a Product Quantization (PQ)-based hybrid method called DiskANN is proposed to store a low-dimensional PQ index in memory and retain a graph index in SSD, thus reducing memory overhead while ensuring a high search accuracy. However, it suffers from two I/O issues that significantly affect the overall efficiency: (1) long routing path from an entry vertex to the query's neighborhood that results in large number of I/O requests and (2) redundant I/O requests during the routing process. We propose an optimized DiskANN++ to overcome above issues. Specifically, for the first issue, we present a query-sensitive entry vertex selection strategy to replace DiskANN's static graph-central entry vertex by a dynamically determined entry vertex that is close to the query. For the second I/O issue, we present an isomorphic mapping on DiskANN's graph index to optimize the SSD layout and propose an asynchronously optimized Pagesearch based on the optimized SSD layout as an alternative to DiskANN's beamsearch. Comprehensive experimental studies on eight real-world datasets demonstrate our DiskANN++'s superiority on efficiency. We achieve a notable 1.5 X to 2.2 X improvement on QPS compared to DiskANN, given the same accuracy constraint.
Two Latin squares of order $n$ are $r$-orthogonal if, when superimposed, there are exactly $r$ distinct ordered pairs. The spectrum of all values of $r$ for Latin squares of order $n$ is known. A Latin square $A$ of order $n$ is $r$-self-orthogonal if $A$ and its transpose are $r$-orthogonal. The spectrum of all values of $r$ is known for all orders $n\ne 14$. We develop randomized algorithms for computing pairs of $r$-orthogonal Latin squares of order $n$ and algorithms for computing $r$-self-orthogonal Latin squares of order $n$.
Power functions with low $c$-differential uniformity have been widely studied not only because of their strong resistance to multiplicative differential attacks, but also low implementation cost in hardware. Furthermore, the $c$-differential spectrum of a function gives a more precise characterization of its $c$-differential properties. Let $f(x)=x^{\frac{p^n+3}{2}}$ be a power function over the finite field $\mathbb{F}_{p^{n}}$, where $p\neq3$ is an odd prime and $n$ is a positive integer. In this paper, for all primes $p\neq3$, by investigating certain character sums with regard to elliptic curves and computing the number of solutions of a system of equations over $\mathbb{F}_{p^{n}}$, we determine explicitly the $(-1)$-differential spectrum of $f$ with a unified approach. We show that if $p^n \equiv 3 \pmod 4$, then $f$ is a differentially $(-1,3)$-uniform function except for $p^n\in\{7,19,23\}$ where $f$ is an APcN function, and if $p^n \equiv 1 \pmod 4$, the $(-1)$-differential uniformity of $f$ is equal to $4$. In addition, an upper bound of the $c$-differential uniformity of $f$ is also given.
We consider the Low Rank Approximation problem, where the input consists of a matrix $A \in \mathbb{R}^{n_R \times n_C}$ and an integer $k$, and the goal is to find a matrix $B$ of rank at most $k$ that minimizes $\| A - B \|_0$, which is the number of entries where $A$ and $B$ differ. For any constant $k$ and $\varepsilon > 0$, we present a polynomial time $(1 + \varepsilon)$-approximation time for this problem, which significantly improves the previous best $poly(k)$-approximation. Our algorithm is obtained by viewing the problem as a Constraint Satisfaction Problem (CSP) where each row and column becomes a variable that can have a value from $\mathbb{R}^k$. In this view, we have a constraint between each row and column, which results in a {\em dense} CSP, a well-studied topic in approximation algorithms. While most of previous algorithms focus on finite-size (or constant-size) domains and involve an exhaustive enumeration over the entire domain, we present a new framework that bypasses such an enumeration in $\mathbb{R}^k$. We also use tools from the rich literature of Low Rank Approximation in different objectives (e.g., $\ell_p$ with $p \in (0, \infty)$) or domains (e.g., finite fields/generalized Boolean). We believe that our techniques might be useful to study other real-valued CSPs and matrix optimization problems. On the hardness side, when $k$ is part of the input, we prove that Low Rank Approximation is NP-hard to approximate within a factor of $\Omega(\log n)$. This is the first superconstant NP-hardness of approximation for any $p \in [0, \infty]$ that does not rely on stronger conjectures (e.g., the Small Set Expansion Hypothesis).