The table-based fact verification task has recently gained widespread attention and yet remains to be a very challenging problem. It inherently requires informative reasoning over natural language together with different numerical and logical reasoning on tables (e.g., count, superlative, comparative). Considering that, we exploit mixture-of-experts and present in this paper a new method: Self-adaptive Mixture-of-Experts Network (SaMoE). Specifically, we have developed a mixture-of-experts neural network to recognize and execute different types of reasoning -- the network is composed of multiple experts, each handling a specific part of the semantics for reasoning, whereas a management module is applied to decide the contribution of each expert network to the verification result. A self-adaptive method is developed to teach the management module combining results of different experts more efficiently without external knowledge. The experimental results illustrate that our framework achieves 85.1% accuracy on the benchmark dataset TabFact, comparable with the previous state-of-the-art models. We hope our framework can serve as a new baseline for table-based verification. Our code is available at //github.com/THUMLP/SaMoE.
Domain generalization (DG) aims at learning generalizable models under distribution shifts to avoid redundantly overfitting massive training data. Previous works with complex loss design and gradient constraint have not yet led to empirical success on large-scale benchmarks. In this work, we reveal the mixture-of-experts (MoE) model's generalizability on DG by leveraging to distributively handle multiple aspects of the predictive features across domains. To this end, we propose Sparse Fusion Mixture-of-Experts (SF-MoE), which incorporates sparsity and fusion mechanisms into the MoE framework to keep the model both sparse and predictive. SF-MoE has two dedicated modules: 1) sparse block and 2) fusion block, which disentangle and aggregate the diverse learned signals of an object, respectively. Extensive experiments demonstrate that SF-MoE is a domain-generalizable learner on large-scale benchmarks. It outperforms state-of-the-art counterparts by more than 2% across 5 large-scale DG datasets (e.g., DomainNet), with the same or even lower computational costs. We further reveal the internal mechanism of SF-MoE from distributed representation perspective (e.g., visual attributes). We hope this framework could facilitate future research to push generalizable object recognition to the real world. Code and models are released at //github.com/Luodian/SF-MoE-DG.
Mixture of Experts (MoE) is able to scale up vision transformers effectively. However, it requires prohibiting computation resources to train a large MoE transformer. In this paper, we propose Residual Mixture of Experts (RMoE), an efficient training pipeline for MoE vision transformers on downstream tasks, such as segmentation and detection. RMoE achieves comparable results with the upper-bound MoE training, while only introducing minor additional training cost than the lower-bound non-MoE training pipelines. The efficiency is supported by our key observation: the weights of an MoE transformer can be factored into an input-independent core and an input-dependent residual. Compared with the weight core, the weight residual can be efficiently trained with much less computation resource, e.g., finetuning on the downstream data. We show that, compared with the current MoE training pipeline, we get comparable results while saving over 30% training cost. When compared with state-of-the-art non- MoE transformers, such as Swin-T / CvT-13 / Swin-L, we get +1.1 / 0.9 / 1.0 mIoU gain on ADE20K segmentation and +1.4 / 1.6 / 0.6 AP gain on MS-COCO object detection task with less than 3% additional training cost.
Modern machine learning (ML) models are becoming increasingly popular and are widely used in decision-making systems. However, studies have shown critical issues of ML discrimination and unfairness, which hinder their adoption on high-stake applications. Recent research on fair classifiers has drawn significant attention to develop effective algorithms to achieve fairness and good classification performance. Despite the great success of these fairness-aware machine learning models, most of the existing models require sensitive attributes to preprocess the data, regularize the model learning or postprocess the prediction to have fair predictions. However, sensitive attributes are often incomplete or even unavailable due to privacy, legal or regulation restrictions. Though we lack the sensitive attribute for training a fair model in the target domain, there might exist a similar domain that has sensitive attributes. Thus, it is important to exploit auxiliary information from the similar domain to help improve fair classification in the target domain. Therefore, in this paper, we study a novel problem of exploring domain adaptation for fair classification. We propose a new framework that can simultaneously estimate the sensitive attributes while learning a fair classifier in the target domain. Extensive experiments on real-world datasets illustrate the effectiveness of the proposed model for fair classification, even when no sensitive attributes are available in the target domain.
Recently, Graph Neural Networks (GNNs) have been applied for scheduling jobs over clusters, achieving better performance than hand-crafted heuristics. Despite their impressive performance, concerns remain over whether these GNN-based job schedulers meet users' expectations about other important properties, such as strategy-proofness, sharing incentive, and stability. In this work, we consider formal verification of GNN-based job schedulers. We address several domain-specific challenges such as networks that are deeper and specifications that are richer than those encountered when verifying image and NLP classifiers. We develop vegas, the first general framework for verifying both single-step and multi-step properties of these schedulers based on carefully designed algorithms that combine abstractions, refinements, solvers, and proof transfer. Our experimental results show that vegas achieves significant speed-up when verifying important properties of a state-of-the-art GNN-based scheduler compared to previous methods.
In recent years, Mixture-of-Experts (MoE) has emerged as a promising technique for deep learning that can scale the model capacity to trillion-plus parameters while reducing the computing cost via sparse computation. While MoE opens a new frontier of exceedingly large models, its implementation over thousands of GPUs has been limited due to mismatch between the dynamic nature of MoE and static parallelism/pipelining of the system. We present Tutel, a highly scalable stack design and implementation for MoE with dynamically adaptive parallelism and pipelining. Tutel delivers adaptive parallelism switching and adaptive pipelining at runtime, which achieves up to 1.74x and 2.00x single MoE layer speedup, respectively. We also propose a novel two-dimensional hierarchical algorithm for MoE communication speedup that outperforms the previous state-of-the-art up to 20.7x over 2,048 GPUs. Aggregating all techniques, Tutel finally delivers 4.96x and 5.75x speedup of a single MoE layer on 16 GPUs and 2,048 GPUs, respectively, over Fairseq: Meta's Facebook AI Research Sequence-to-Sequence Toolkit (Tutel is now partially adopted by Fairseq). Tutel source code is available in public: //github.com/microsoft/tutel . Our evaluation shows that Tutel efficiently and effectively runs a real-world MoE-based model named SwinV2-MoE, built upon Swin Transformer V2, a state-of-the-art computer vision architecture. On efficiency, Tutel accelerates SwinV2-MoE, achieving up to 1.55x and 2.11x speedup in training and inference over Fairseq, respectively. On effectiveness, the SwinV2-MoE model achieves superior accuracy in both pre-training and down-stream computer vision tasks such as COCO object detection than the counterpart dense model, indicating the readiness of Tutel for end-to-end real-world model training and inference. SwinV2-MoE is open sourced in //github.com/microsoft/Swin-Transformer .
Adversarial training, which is to enhance robustness against adversarial attacks, has received much attention because it is easy to generate human-imperceptible perturbations of data to deceive a given deep neural network. In this paper, we propose a new adversarial training algorithm that is theoretically well motivated and empirically superior to other existing algorithms. A novel feature of the proposed algorithm is to use a data-adaptive regularization for robustifying a prediction model. We apply more regularization to data which are more vulnerable to adversarial attacks and vice versa. Even though the idea of data-adaptive regularization is not new, our data-adaptive regularization has a firm theoretical base of reducing an upper bound of the robust risk. Numerical experiments illustrate that our proposed algorithm improves the generalization (accuracy on clean samples) and robustness (accuracy on adversarial attacks) simultaneously to achieve the state-of-the-art performance.
We propose a new model-free feature screening method based on energy distances for ultrahigh-dimensional binary classification problems. Unlike existing methods, the cut-off involved in our procedure is data adaptive. With a high probability, the proposed method retains only relevant features after discarding all the noise variables. The proposed screening method is also extended to identify pairs of variables that are marginally undetectable, but have differences in their joint distributions. Finally, we build a classifier which maintains coherence between the proposed feature selection criteria and discrimination method, and also establish its risk consistency. An extensive numerical study with simulated data sets and real benchmark data sets show clear and convincing advantages of our classifier over the state-of-the-art methods.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
Graph classification aims to perform accurate information extraction and classification over graphstructured data. In the past few years, Graph Neural Networks (GNNs) have achieved satisfactory performance on graph classification tasks. However, most GNNs based methods focus on designing graph convolutional operations and graph pooling operations, overlooking that collecting or labeling graph-structured data is more difficult than grid-based data. We utilize meta-learning for fewshot graph classification to alleviate the scarce of labeled graph samples when training new tasks.More specifically, to boost the learning of graph classification tasks, we leverage GNNs as graph embedding backbone and meta-learning as training paradigm to capture task-specific knowledge rapidly in graph classification tasks and transfer them to new tasks. To enhance the robustness of meta-learner, we designed a novel step controller driven by Reinforcement Learning. The experiments demonstrate that our framework works well compared to baselines.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.