亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This technical report describes the intersection of process mining and large language models (LLMs), specifically focusing on the abstraction of traditional and object-centric process mining artifacts into textual format. We introduce and explore various prompting strategies: direct answering, where the large language model directly addresses user queries; multi-prompt answering, which allows the model to incrementally build on the knowledge obtained through a series of prompts; and the generation of database queries, facilitating the validation of hypotheses against the original event log. Our assessment considers two large language models, GPT-4 and Google's Bard, under various contextual scenarios across all prompting strategies. Results indicate that these models exhibit a robust understanding of key process mining abstractions, with notable proficiency in interpreting both declarative and procedural process models. In addition, we find that both models demonstrate strong performance in the object-centric setting, which could significantly propel the advancement of the object-centric process mining discipline. Additionally, these models display a noteworthy capacity to evaluate various concepts of fairness in process mining. This opens the door to more rapid and efficient assessments of the fairness of process mining event logs, which has significant implications for the field. The integration of these large language models into process mining applications may open new avenues for exploration, innovation, and insight generation in the field.

相關內容

While standard speaker diarization attempts to answer the question "who spoken when", most of relevant applications in reality are more interested in determining "who spoken what". Whether it is the conventional modularized approach or the more recent end-to-end neural diarization (EEND), an additional automatic speech recognition (ASR) model and an orchestration algorithm are required to associate the speaker labels with recognized words. In this paper, we propose Word-level End-to-End Neural Diarization (WEEND) with auxiliary network, a multi-task learning algorithm that performs end-to-end ASR and speaker diarization in the same neural architecture. That is, while speech is being recognized, speaker labels are predicted simultaneously for each recognized word. Experimental results demonstrate that WEEND outperforms the turn-based diarization baseline system on all 2-speaker short-form scenarios and has the capability to generalize to audio lengths of 5 minutes. Although 3+speaker conversations are harder, we find that with enough in-domain training data, WEEND has the potential to deliver high quality diarized text.

Self-supervised pre-training of language models usually consists in predicting probability distributions over extensive token vocabularies. In this study, we propose an innovative method that shifts away from probability prediction and instead focuses on reconstructing input embeddings in a contrastive fashion via Constrastive Weight Tying (CWT). We apply this approach to pretrain Headless Language Models in both monolingual and multilingual contexts. Our method offers practical advantages, substantially reducing training computational requirements by up to 20 times, while simultaneously enhancing downstream performance and data efficiency. We observe a significant +1.6 GLUE score increase and a notable +2.7 LAMBADA accuracy improvement compared to classical LMs within similar compute budgets.

This thesis focuses on improving the pre-training of natural language models using unsupervised raw data to make them more efficient and aligned with downstream applications. In the first part, we introduce three alternative pre-training objectives to BERT's Masked Language Modeling (MLM), namely Random Token Substitution (RTS), Cluster-based Random Token Substitution (C-RTS), and Swapped Language Modeling (SLM). These objectives involve token swapping instead of masking, with RTS and C-RTS aiming to predict token originality and SLM predicting the original token values. Results show that RTS and C-RTS require less pre-training time while maintaining performance comparable to MLM. Surprisingly, SLM outperforms MLM on certain tasks despite using the same computational budget. In the second part, we proposes self-supervised pre-training tasks that align structurally with downstream applications, reducing the need for labeled data. We use large corpora like Wikipedia and CC-News to train models to recognize if text spans originate from the same paragraph or document in several ways. By doing continuous pre-training, starting from existing models like RoBERTa, ELECTRA, DeBERTa, BART, and T5, we demonstrate significant performance improvements in tasks like Fact Verification, Answer Sentence Selection, and Summarization. These improvements are especially pronounced when limited annotation data is available. The proposed objectives also achieve state-of-the-art results on various benchmark datasets, including FEVER (dev set), ASNQ, WikiQA, and TREC-QA, as well as enhancing the quality of summaries. Importantly, these techniques can be easily integrated with other methods without altering the internal structure of Transformer models, making them versatile for various NLP applications.

We introduce the Qwen-VL series, a set of large-scale vision-language models (LVLMs) designed to perceive and understand both text and images. Comprising Qwen-VL and Qwen-VL-Chat, these models exhibit remarkable performance in tasks like image captioning, question answering, visual localization, and flexible interaction. The evaluation covers a wide range of tasks including zero-shot captioning, visual or document visual question answering, and grounding. We demonstrate the Qwen-VL outperforms existing LVLMs. We present their architecture, training, capabilities, and performance, highlighting their contributions to advancing multimodal artificial intelligence. Code, demo and models are available at //github.com/QwenLM/Qwen-VL.

Large language models (LLMs) implicitly learn to perform a range of language tasks, including machine translation (MT). Previous studies explore aspects of LLMs' MT capabilities. However, there exist a wide variety of languages for which recent LLM MT performance has never before been evaluated. Without published experimental evidence on the matter, it is difficult for speakers of the world's diverse languages to know how and whether they can use LLMs for their languages. We present the first experimental evidence for an expansive set of 204 languages, along with MT cost analysis, using the FLORES-200 benchmark. Trends reveal that GPT models approach or exceed traditional MT model performance for some high-resource languages (HRLs) but consistently lag for low-resource languages (LRLs), under-performing traditional MT for 84.1% of languages we covered. Our analysis reveals that a language's resource level is the most important feature in determining ChatGPT's relative ability to translate it, and suggests that ChatGPT is especially disadvantaged for LRLs and African languages.

Approaches for stochastic nonlinear model predictive control (SNMPC) typically make restrictive assumptions about the system dynamics and rely on approximations to characterize the evolution of the underlying uncertainty distributions. For this reason, they are often unable to capture more complex distributions (e.g., non-Gaussian or multi-modal) and cannot provide accurate guarantees of performance. In this paper, we present a sampling-based SNMPC approach that leverages recently derived sample complexity bounds to certify the performance of a feedback policy without making assumptions about the system dynamics or underlying uncertainty distributions. By parallelizing our approach, we are able to demonstrate real-time receding-horizon SNMPC with statistical safety guarantees in simulation and on hardware using a 1/10th scale rally car and a 24-inch wingspan fixed-wing unmanned aerial vehicle (UAV).

The increasingly Large Language Models (LLMs) demonstrate stronger language understanding and generation capabilities, while the memory demand and computation cost of fine-tuning LLMs on downstream tasks are non-negligible. Besides, fine-tuning generally requires a certain amount of data from individual tasks whilst data collection cost is another issue to consider in real-world applications. In this work, we focus on Parameter-Efficient Fine-Tuning (PEFT) methods for few-shot Natural Language Generation (NLG), which freeze most parameters in LLMs and tune a small subset of parameters in few-shot cases so that memory footprint, training cost, and labeling cost are reduced while maintaining or even improving the performance. We propose a Scaled Prompt-Tuning (SPT) method which surpasses conventional PT with better performance and generalization ability but without an obvious increase in training cost. Further study on intermediate SPT suggests the superior transferability of SPT in few-shot scenarios, providing a recipe for data-deficient and computation-limited circumstances. Moreover, a comprehensive comparison of existing PEFT methods reveals that certain approaches exhibiting decent performance with modest training cost such as Prefix-Tuning in prior study could struggle in few-shot NLG tasks, especially on challenging datasets.

Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Generative Adversarial Nets (GAN) have received considerable attention since the 2014 groundbreaking work by Goodfellow et al. Such attention has led to an explosion in new ideas, techniques and applications of GANs. To better understand GANs we need to understand the mathematical foundation behind them. This paper attempts to provide an overview of GANs from a mathematical point of view. Many students in mathematics may find the papers on GANs more difficulty to fully understand because most of them are written from computer science and engineer point of view. The aim of this paper is to give more mathematically oriented students an introduction to GANs in a language that is more familiar to them.

北京阿比特科技有限公司