亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of overcoming exponential sample complexity in differential entropy estimation under Gaussian convolutions. Specifically, we consider the estimation of the differential entropy $h(X+Z)$ via $n$ independently and identically distributed samples of $X$, where $X$ and $Z$ are independent $D$-dimensional random variables with $X$ sub-Gaussian with bounded second moment and $Z\sim\mathcal{N}(0,\sigma^2I_D)$. Under the absolute-error loss, the above problem has a parametric estimation rate of $\frac{c^D}{\sqrt{n}}$, which is exponential in data dimension $D$ and often problematic for applications. We overcome this exponential sample complexity by projecting $X$ to a low-dimensional space via principal component analysis (PCA) before the entropy estimation, and show that the asymptotic error overhead vanishes as the unexplained variance of the PCA vanishes. This implies near-optimal performance for inherently low-dimensional structures embedded in high-dimensional spaces, including hidden-layer outputs of deep neural networks (DNN), which can be used to estimate mutual information (MI) in DNNs. We provide numerical results verifying the performance of our PCA approach on Gaussian and spiral data. We also apply our method to analysis of information flow through neural network layers (c.f. information bottleneck), with results measuring mutual information in a noisy fully connected network and a noisy convolutional neural network (CNN) for MNIST classification.

相關內容

This paper considers the problem of learning a single ReLU neuron with squared loss (a.k.a., ReLU regression) in the overparameterized regime, where the input dimension can exceed the number of samples. We analyze a Perceptron-type algorithm called GLM-tron (Kakade et al., 2011) and provide its dimension-free risk upper bounds for high-dimensional ReLU regression in both well-specified and misspecified settings. Our risk bounds recover several existing results as special cases. Moreover, in the well-specified setting, we provide an instance-wise matching risk lower bound for GLM-tron. Our upper and lower risk bounds provide a sharp characterization of the high-dimensional ReLU regression problems that can be learned via GLM-tron. On the other hand, we provide some negative results for stochastic gradient descent (SGD) for ReLU regression with symmetric Bernoulli data: if the model is well-specified, the excess risk of SGD is provably no better than that of GLM-tron ignoring constant factors, for each problem instance; and in the noiseless case, GLM-tron can achieve a small risk while SGD unavoidably suffers from a constant risk in expectation. These results together suggest that GLM-tron might be preferable to SGD for high-dimensional ReLU regression.

Animals have a developed ability to explore that aids them in important tasks such as locating food, exploring for shelter, and finding misplaced items. These exploration skills necessarily track where they have been so that they can plan for finding items with relative efficiency. Contemporary exploration algorithms often learn a less efficient exploration strategy because they either condition only on the current state or simply rely on making random open-loop exploratory moves. In this work, we propose $\eta\psi$-Learning, a method to learn efficient exploratory policies by conditioning on past episodic experience to make the next exploratory move. Specifically, $\eta\psi$-Learning learns an exploration policy that maximizes the entropy of the state visitation distribution of a single trajectory. Furthermore, we demonstrate how variants of the predecessor representation and successor representations can be combined to predict the state visitation entropy. Our experiments demonstrate the efficacy of $\eta\psi$-Learning to strategically explore the environment and maximize the state coverage with limited samples.

In multivariate time series analysis, the coherence measures the linear dependency between two-time series at different frequencies. However, real data applications often exhibit nonlinear dependency in the frequency domain. Conventional coherence analysis fails to capture such dependency. The quantile coherence, on the other hand, characterizes nonlinear dependency by defining the coherence at a set of quantile levels based on trigonometric quantile regression. Although quantile coherence is a more powerful tool, its estimation remains challenging due to the high level of noise. This paper introduces a new estimation technique for quantile coherence. The proposed method is semi-parametric, which uses the parametric form of the spectrum of the vector autoregressive (VAR) model as an approximation to the quantile spectral matrix, along with nonparametric smoothing across quantiles. For each fixed quantile level, we obtain the VAR parameters from the quantile periodograms, then, using the Durbin-Levinson algorithm, we calculate the preliminary estimate of quantile coherence using the VAR parameters. Finally, we smooth the preliminary estimate of quantile coherence across quantiles using a nonparametric smoother. Numerical results show that the proposed estimation method outperforms nonparametric methods. We show that quantile coherence-based bivariate time series clustering has advantages over the ordinary VAR coherence. For applications, the identified clusters of financial stocks by quantile coherence with a market benchmark are shown to have an intriguing and more accurate structure of diversified investment portfolios that may be used by investors to make better decisions.

We develop a practical way of addressing the Errors-In-Variables (EIV) problem in the Generalized Method of Moments (GMM) framework. We focus on the settings in which the variability of the EIV is a fraction of that of the mismeasured variables, which is typical for empirical applications. For any initial set of moment conditions our approach provides a corrected set of moment conditions that are robust to the EIV. We show that the GMM estimator based on these moments is root-n-consistent, with the standard tests and confidence intervals providing valid inference. This is true even when the EIV are so large that naive estimators (that ignore the EIV problem) may be heavily biased with the confidence intervals having 0% coverage. Our approach involves no nonparametric estimation, which is particularly important for applications with multiple covariates, and settings with multivariate, serially correlated, or non-classical EIV.

What is the dimension of a network? Here, we view it as the smallest dimension of Euclidean space into which nodes can be embedded so that pairwise distances accurately reflect the connectivity structure. We show that a recently proposed and extremely efficient algorithm for data clouds, based on computing first and second nearest neighbour distances, can be used as the basis of an approach for estimating the dimension of a network with weighted edges. We also show how the algorithm can be extended to unweighted networks when combined with spectral embedding. We illustrate the advantages of this technique over the widely-used approach of characterising dimension by visually searching for a suitable gap in the spectrum of the Laplacian.

This paper proposes an adaptive penalized weighted mean regression for outlier detection of high-dimensional data. In comparison to existing approaches based on the mean shift model, the proposed estimators demonstrate robustness against outliers present in both response variables and/or covariates. By utilizing the adaptive Huber loss function, the proposed method is effective in high-dimensional linear models characterized by heavy-tailed and heteroscedastic error distributions. The proposed framework enables simultaneous and collaborative estimation of regression parameters and outlier detection. Under regularity conditions, outlier detection consistency and oracle inequalities of robust estimates in high-dimensional settings are established. Additionally, theoretical robustness properties, such as the breakdown point and a smoothed limiting influence function, are ascertained. Extensive simulation studies and a breast cancer survival data are used to evaluate the numerical performance of the proposed method, demonstrating comparable or superior variable selection and outlier detection capabilities.

One of the most interesting tools that have recently entered the data science toolbox is topological data analysis (TDA). With the explosion of available data sizes and dimensions, identifying and extracting the underlying structure of a given dataset is a fundamental challenge in data science, and TDA provides a methodology for analyzing the shape of a dataset using tools and prospects from algebraic topology. However, the computational complexity makes it quickly infeasible to process large datasets, especially those with high dimensions. Here, we introduce a preprocessing strategy called the Characteristic Lattice Algorithm (CLA), which allows users to reduce the size of a given dataset as desired while maintaining geometric and topological features in order to make the computation of TDA feasible or to shorten its computation time. In addition, we derive a stability theorem and an upper bound of the barcode errors for CLA based on the bottleneck distance.

Latent variable models are powerful tools for modeling complex phenomena involving in particular partially observed data, unobserved variables or underlying complex unknown structures. Inference is often difficult due to the latent structure of the model. To deal with parameter estimation in the presence of latent variables, well-known efficient methods exist, such as gradient-based and EM-type algorithms, but with practical and theoretical limitations. In this paper, we propose as an alternative for parameter estimation an efficient preconditioned stochastic gradient algorithm. Our method includes a preconditioning step based on a positive definite Fisher information matrix estimate. We prove convergence results for the proposed algorithm under mild assumptions for very general latent variables models. We illustrate through relevant simulations the performance of the proposed methodology in a nonlinear mixed effects model and in a stochastic block model.

Recent works have explored the fundamental role of depth estimation in multi-view stereo (MVS) and semantic scene completion (SSC). They generally construct 3D cost volumes to explore geometric correspondence in depth, and estimate such volumes in a single step relying directly on the ground truth approximation. However, such problem cannot be thoroughly handled in one step due to complex empirical distributions, especially in challenging regions like occlusions, reflections, etc. In this paper, we formulate the depth estimation task as a multi-step distribution approximation process, and introduce a new paradigm of modeling the Volumetric Probability Distribution progressively (step-by-step) following a Markov chain with Diffusion models (VPDD). Specifically, to constrain the multi-step generation of volume in VPDD, we construct a meta volume guidance and a confidence-aware contextual guidance as conditional geometry priors to facilitate the distribution approximation. For the sampling process, we further investigate an online filtering strategy to maintain consistency in volume representations for stable training. Experiments demonstrate that our plug-and-play VPDD outperforms the state-of-the-arts for tasks of MVS and SSC, and can also be easily extended to different baselines to get improvement. It is worth mentioning that we are the first camera-based work that surpasses LiDAR-based methods on the SemanticKITTI dataset.

In recent years, studies such as \cite{carmon2019unlabeled,gowal2021improving,xing2022artificial} have demonstrated that incorporating additional real or generated data with pseudo-labels can enhance adversarial training through a two-stage training approach. In this paper, we perform a theoretical analysis of the asymptotic behavior of this method in high-dimensional linear regression. While a double-descent phenomenon can be observed in ridgeless training, with an appropriate $\mathcal{L}_2$ regularization, the two-stage adversarial training achieves a better performance. Finally, we derive a shortcut cross-validation formula specifically tailored for the two-stage training method.

北京阿比特科技有限公司