亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Riemannian submanifold optimization with momentum is computationally challenging because, to ensure that the iterates remain on the submanifold, we often need to solve difficult differential equations. Here, we simplify such difficulties for a class of sparse or structured symmetric positive-definite matrices with the affine-invariant metric. We do so by proposing a generalized version of the Riemannian normal coordinates that dynamically orthonormalizes the metric and locally converts the problem into an unconstrained problem in the Euclidean space. We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free $2^\text{nd}$-order optimizers for deep learning with low precision by using only matrix multiplications. Code: //github.com/yorkerlin/StructuredNGD-DL

相關內容

Crafting an effective Automatic Speech Recognition (ASR) solution for dialects demands innovative approaches that not only address the data scarcity issue but also navigate the intricacies of linguistic diversity. In this paper, we address the aforementioned ASR challenge, focusing on the Tunisian dialect. First, textual and audio data is collected and in some cases annotated. Second, we explore self-supervision, semi-supervision and few-shot code-switching approaches to push the state-of-the-art on different Tunisian test sets; covering different acoustic, linguistic and prosodic conditions. Finally, and given the absence of conventional spelling, we produce a human evaluation of our transcripts to avoid the noise coming from spelling inadequacies in our testing references. Our models, allowing to transcribe audio samples in a linguistic mix involving Tunisian Arabic, English and French, and all the data used during training and testing are released for public use and further improvements.

In the field of medical image analysis, there is a substantial need for high-resolution (HR) images to improve diagnostic accuracy. However, It is a challenging task to obtain HR medical images, as it requires advanced instruments and significant time. Deep learning-based super-resolution methods can help to improve the resolution and perceptual quality of low-resolution (LR) medical images. Recently, Generative Adversarial Network (GAN) based methods have shown remarkable performance among deep learning-based super-resolution methods. Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is a practical model for recovering HR images from real-world LR images. In our proposed approach, we use transfer learning technique and fine-tune the pre-trained Real-ESRGAN model using medical image datasets. This technique helps in improving the performance of the model. The focus of this paper is on enhancing the resolution and perceptual quality of chest X-ray and retinal images. We use the Tuberculosis chest X-ray (Shenzhen) dataset and the STARE dataset of retinal images for fine-tuning the model. The proposed model achieves superior perceptual quality compared to the Real-ESRGAN model, effectively preserving fine details and generating images with more realistic textures.

We consider the problem of learning multiple tasks in a continual learning setting in which data from different tasks is presented to the learner in a streaming fashion. A key challenge in this setting is the so-called "catastrophic forgetting problem", in which the performance of the learner in an "old task" decreases when subsequently trained on a "new task". Existing continual learning methods, such as Averaged Gradient Episodic Memory (A-GEM) and Orthogonal Gradient Descent (OGD), address catastrophic forgetting by minimizing the loss for the current task without increasing the loss for previous tasks. However, these methods assume the learner knows when the task changes, which is unrealistic in practice. In this paper, we alleviate the need to provide the algorithm with information about task changes by using an online clustering-based approach on a dynamically updated finite pool of samples or gradients. We thereby successfully counteract catastrophic forgetting in one of the hardest settings, namely: domain-incremental learning, a setting for which the problem was previously unsolved. We showcase the benefits of our approach by applying these ideas to projection-based methods, such as A-GEM and OGD, which lead to task-agnostic versions of them. Experiments on real datasets demonstrate the effectiveness of the proposed strategy and its promising performance compared to state-of-the-art methods.

Computer simulations have become essential for analyzing complex systems, but high-fidelity simulations often come with significant computational costs. To tackle this challenge, multi-fidelity computer experiments have emerged as a promising approach that leverages both low-fidelity and high-fidelity simulations, enhancing both the accuracy and efficiency of the analysis. In this paper, we introduce a new and flexible statistical model, the Recursive Non-Additive (RNA) emulator, that integrates the data from multi-fidelity computer experiments. Unlike conventional multi-fidelity emulation approaches that rely on an additive auto-regressive structure, the proposed RNA emulator recursively captures the relationships between multi-fidelity data using Gaussian process priors without making the additive assumption, allowing the model to accommodate more complex data patterns. Importantly, we derive the posterior predictive mean and variance of the emulator, which can be efficiently computed in a closed-form manner, leading to significant improvements in computational efficiency. Additionally, based on this emulator, we introduce three active learning strategies that optimize the balance between accuracy and simulation costs to guide the selection of the fidelity level and input locations for the next simulation run. We demonstrate the effectiveness of the proposed approach in a suite of synthetic examples and a real-world problem. An R package for the proposed methodology is provided in an open repository.

We present a novel adversarial model for authentication systems that use gait patterns recorded by the inertial measurement unit (IMU) built into smartphones. The attack idea is inspired by and named after the concept of a dictionary attack on knowledge (PIN or password) based authentication systems. In particular, this work investigates whether it is possible to build a dictionary of IMUGait patterns and use it to launch an attack or find an imitator who can actively reproduce IMUGait patterns that match the target's IMUGait pattern. Nine physically and demographically diverse individuals walked at various levels of four predefined controllable and adaptable gait factors (speed, step length, step width, and thigh-lift), producing 178 unique IMUGait patterns. Each pattern attacked a wide variety of user authentication models. The deeper analysis of error rates (before and after the attack) challenges the belief that authentication systems based on IMUGait patterns are the most difficult to spoof; further research is needed on adversarial models and associated countermeasures.

Phase retrieval (PR) is a crucial problem in many imaging applications. This study focuses on resolving the holographic phase retrieval problem in situations where the measurements are affected by a combination of Poisson and Gaussian noise, which commonly occurs in optical imaging systems. To address this problem, we propose a new algorithm called "AWFS" that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior. Specifically, we formulate the PR problem as an optimization problem that incorporates both data fidelity and regularization terms. We calculate the gradient of the log-likelihood function for PR and determine its corresponding Lipschitz constant. Additionally, we introduce a generative prior in our regularization framework by using score matching to capture information about the gradient of image prior distributions. We provide theoretical analysis that establishes a critical-point convergence guarantee for the proposed algorithm. The results of our simulation experiments on three different datasets show the following: 1) By using the PG likelihood model, the proposed algorithm improves reconstruction compared to algorithms based solely on Gaussian or Poisson likelihood. 2) The proposed score-based image prior method, performs better than the method based on denoising diffusion probabilistic model (DDPM), as well as plug-and-play alternating direction method of multipliers (PnP-ADMM) and regularization by denoising (RED).

Cloud computing as a fairly new commercial paradigm, widely investigated by different researchers, already has a great range of challenges. Pricing is a major problem in Cloud computing marketplace; as providers are competing to attract more customers without knowing the pricing policies of each other. To overcome this lack of knowledge, we model their competition by an incomplete-information game. Considering the issue, this work proposes a pricing policy related to the regret minimization algorithm and applies it to the considered incomplete-information game. Based on the competition based marketplace of the Cloud, providers update the distribution of their strategies using the experienced regret. The idea of iteratively applying the algorithm for updating probabilities of strategies causes the regret get minimized faster. The experimental results show much more increase in profits of the providers in comparison with other pricing policies. Besides, the efficiency of a variety of regret minimization techniques in a simulated marketplace of Cloud are discussed which have not been observed in the studied literature. Moreover, return on investment of providers in considered organizations is studied and promising results appeared.

Many protocols in distributed computing rely on a source of randomness, usually called a random beacon, both for their applicability and security. This is especially true for proof-of-stake blockchain protocols in which the next miner or set of miners have to be chosen randomly and each party's likelihood to be selected is in proportion to their stake in the cryptocurrency. Current random beacons used in proof-of-stake protocols, such as Ouroboros and Algorand, have two fundamental limitations: Either (i)~they rely on pseudorandomness, e.g.~assuming that the output of a hash function is uniform, which is a widely-used but unproven assumption, or (ii)~they generate their randomness using a distributed protocol in which several participants are required to submit random numbers which are then used in the generation of a final random result. However, in this case, there is no guarantee that the numbers provided by the parties are uniformly random and there is no incentive for the parties to honestly generate uniform randomness. Most random beacons have both limitations. In this thesis, we provide a protocol for distributed generation of randomness. Our protocol does not rely on pseudorandomness at all. Similar to some of the previous approaches, it uses random inputs by different participants to generate a final random result. However, the crucial difference is that we provide a game-theoretic guarantee showing that it is in everyone's best interest to submit uniform random numbers. Hence, our approach is the first to incentivize honest behavior instead of just assuming it. Moreover, the approach is trustless and generates unbiased random numbers. It is also tamper-proof and no party can change the output or affect its distribution. Finally, it is designed with modularity in mind and can be easily plugged into existing distributed protocols such as proof-of-stake blockchains.

A problem that plagues robotic grasping is the misalignment of the object and gripper due to difficulties in precise localization, actuation, etc. Under-actuated robotic hands with compliant mechanisms are used to adapt and compensate for these inaccuracies. However, these mechanisms come at the cost of controllability and coordination. For instance, adaptive functions that let the fingers of a two-fingered gripper adapt independently may affect the coordination necessary for grasping small objects. In this work, we develop a two-fingered robotic hand capable of grasping objects that are offset from the gripper's center, while still having the requisite coordination for grasping small objects via a novel gear-type synchronization mechanism with a magnet. This gear synchronization mechanism allows the adaptive finger's tips to be aligned enabling it to grasp objects as small as toothpicks and washers. The magnetic component allows this coordination to automatically turn off when needed, allowing for the grasping of objects that are offset/misaligned from the gripper. This equips the hand with the capability of grasping light, fragile objects (strawberries, creampuffs, etc) to heavy frying pan lids, all while maintaining their position and posture which is vital in numerous applications that require precise positioning or careful manipulation.

Due to their inherent capability in semantic alignment of aspects and their context words, attention mechanism and Convolutional Neural Networks (CNNs) are widely applied for aspect-based sentiment classification. However, these models lack a mechanism to account for relevant syntactical constraints and long-range word dependencies, and hence may mistakenly recognize syntactically irrelevant contextual words as clues for judging aspect sentiment. To tackle this problem, we propose to build a Graph Convolutional Network (GCN) over the dependency tree of a sentence to exploit syntactical information and word dependencies. Based on it, a novel aspect-specific sentiment classification framework is raised. Experiments on three benchmarking collections illustrate that our proposed model has comparable effectiveness to a range of state-of-the-art models, and further demonstrate that both syntactical information and long-range word dependencies are properly captured by the graph convolution structure.

北京阿比特科技有限公司