We propose a multivariate probability distribution for categorical and ordinal random variables. To this end, we use the Grassmann distribution in conjunction with dummy encoding of categorical and ordinal variables. To realize the co-occurrence probabilities of dummy variables required for categorical and ordinal variables, we propose a parsimonious parameterization for the Grassmann distribution that ensures the positivity of probability distribution. As an application of the proposed distribution, we develop a factor analysis for categorical and ordinal variables and show the validity of the model using a real dataset.
We propose a learning-based method to recover normals, specularity, and roughness from a single diffuse image of a material, using microgeometry appearance as our primary cue. Previous methods that work on single images tend to produce over-smooth outputs with artifacts, operate at limited resolution, or train one model per class with little room for generalization. Previous methods that work on single images tend to produce over-smooth outputs with artifacts, operate at limited resolution, or train one model per class with little room for generalization. In contrast, in this work, we propose a novel capture approach that leverages a generative network with attention and a U-Net discriminator, which shows outstanding performance integrating global information at reduced computational complexity. We showcase the performance of our method with a real dataset of digitized textile materials and show that a commodity flatbed scanner can produce the type of diffuse illumination required as input to our method. Additionally, because the problem might be illposed -more than a single diffuse image might be needed to disambiguate the specular reflection- or because the training dataset is not representative enough of the real distribution, we propose a novel framework to quantify the model's confidence about its prediction at test time. Our method is the first one to deal with the problem of modeling uncertainty in material digitization, increasing the trustworthiness of the process and enabling more intelligent strategies for dataset creation, as we demonstrate with an active learning experiment.
In this work, we propose an efficient two-stage algorithm solving a joint problem of correlation detection and partial alignment recovery between two Gaussian databases. Correlation detection is a hypothesis testing problem; under the null hypothesis, the databases are independent, and under the alternate hypothesis, they are correlated, under an unknown row permutation. We develop bounds on the type-I and type-II error probabilities, and show that the analyzed detector performs better than a recently proposed detector, at least for some specific parameter choices. Since the proposed detector relies on a statistic, which is a sum of dependent indicator random variables, then in order to bound the type-I probability of error, we develop a novel graph-theoretic technique for bounding the $k$-th order moments of such statistics. When the databases are accepted as correlated, the algorithm also recovers some partial alignment between the given databases. We also propose two more algorithms: (i) One more algorithm for partial alignment recovery, whose reliability and computational complexity are both higher than those of the first proposed algorithm. (ii) An algorithm for full alignment recovery, which has a reduced amount of calculations and a not much lower error probability, when compared to the optimal recovery procedure.
It is typically understood that the training of modern neural networks is a process of fitting the probability distribution of desired output. However, recent paradoxical observations in a number of language generation tasks let one wonder if this canonical probability-based explanation can really account for the empirical success of deep learning. To resolve this issue, we propose an alternative utility-based explanation to the standard supervised learning procedure in deep learning. The basic idea is to interpret the learned neural network not as a probability model but as an ordinal utility function that encodes the preference revealed in training data. In this perspective, training of the neural network corresponds to a utility learning process. Specifically, we show that for all neural networks with softmax outputs, the SGD learning dynamic of maximum likelihood estimation (MLE) can be seen as an iteration process that optimizes the neural network toward an optimal utility function. This utility-based interpretation can explain several otherwise-paradoxical observations about the neural networks thus trained. Moreover, our utility-based theory also entails an equation that can transform the learned utility values back to a new kind of probability estimation with which probability-compatible decision rules enjoy dramatic (double-digits) performance improvements. These evidences collectively reveal a phenomenon of utility-probability duality in terms of what modern neural networks are (truly) modeling: We thought they are one thing (probabilities), until the unexplainable showed up; changing mindset and treating them as another thing (utility values) largely reconcile the theory, despite remaining subtleties regarding its original (probabilistic) identity.
We define the supermodular rank of a function on a lattice. This is the smallest number of terms needed to decompose it into a sum of supermodular functions. The supermodular summands are defined with respect to different partial orders. We characterize the maximum possible value of the supermodular rank and describe the functions with fixed supermodular rank. We analogously define the submodular rank. We use submodular decompositions to optimize set functions. Given a bound on the submodular rank of a set function, we formulate an algorithm that splits an optimization problem into submodular subproblems. We show that this method improves the approximation ratio guarantees of several algorithms for monotone set function maximization and ratio of set functions minimization, at a computation overhead that depends on the submodular rank.
We study the change point detection problem for high-dimensional linear regression models. The existing literature mainly focused on the change point estimation with stringent sub-Gaussian assumptions on the errors. In practice, however, there is no prior knowledge about the existence of a change point or the tail structures of errors. To address these issues, in this paper, we propose a novel tail-adaptive approach for simultaneous change point testing and estimation. The method is built on a new loss function which is a weighted combination between the composite quantile and least squared losses, allowing us to borrow information of the possible change points from both the conditional mean and quantiles. For the change point testing, based on the adjusted $L_2$-norm aggregation of a weighted score CUSUM process, we propose a family of individual testing statistics with different weights to account for the unknown tail structures. Combining the individual tests, a tail-adaptive test is further constructed that is powerful for sparse alternatives of regression coefficients' changes under various tail structures. For the change point estimation, a family of argmax-based individual estimators is proposed once a change point is detected. In theory, for both individual and tail-adaptive tests, the bootstrap procedures are proposed to approximate their limiting null distributions. Under some mild conditions, we justify the validity of the new tests in terms of size and power under the high-dimensional setup. The corresponding change point estimators are shown to be rate optimal up to a logarithm factor. Moreover, combined with the wild binary segmentation technique, a new algorithm is proposed to detect multiple change points in a tail-adaptive manner. Extensive numerical results are conducted to illustrate the appealing performance of the proposed method.
Existing results for the estimation of the L\'evy measure are mostly limited to the onedimensional setting. We apply the spectral method to multidimensional L\'evy processes in order to construct a nonparametric estimator for the multivariate jump distribution. We prove convergence rates for the uniform estimation error under both a low- and a high-frequency observation regime. The method is robust to various dependence structures. Along the way, we present a uniform risk bound for the multivariate empirical characteristic function and its partial derivatives. The method is illustrated with simulation examples.
In many life science experiments or medical studies, subjects are repeatedly observed and measurements are collected in factorial designs with multivariate data. The analysis of such multivariate data is typically based on multivariate analysis of variance (MANOVA) or mixed models, requiring complete data, and certain assumption on the underlying parametric distribution such as continuity or a specific covariance structure, e.g., compound symmetry. However, these methods are usually not applicable when discrete data or even ordered categorical data are present. In such cases, nonparametric rank-based methods that do not require stringent distributional assumptions are the preferred choice. However, in the multivariate case, most rank-based approaches have only been developed for complete observations. It is the aim of this work is to develop asymptotic correct procedures that are capable of handling missing values, allowing for singular covariance matrices and are applicable for ordinal or ordered categorical data. This is achieved by applying a wild bootstrap procedure in combination with quadratic form-type test statistics. Beyond proving their asymptotic correctness, extensive simulation studies validate their applicability for small samples. Finally, two real data examples are analyzed.
This work studies the estimation of many statistical quantiles under differential privacy. More precisely, given a distribution and access to i.i.d. samples from it, we study the estimation of the inverse of its cumulative distribution function (the quantile function) at specific points. For instance, this task is of key importance in private data generation. We present two different approaches. The first one consists in privately estimating the empirical quantiles of the samples and using this result as an estimator of the quantiles of the distribution. In particular, we study the statistical properties of the recently published algorithm introduced by Kaplan et al. 2022 that privately estimates the quantiles recursively. The second approach is to use techniques of density estimation in order to uniformly estimate the quantile function on an interval. In particular, we show that there is a tradeoff between the two methods. When we want to estimate many quantiles, it is better to estimate the density rather than estimating the quantile function at specific points.
We rigorously quantify the improvement in the sample complexity of variational divergence estimations for group-invariant distributions. In the cases of the Wasserstein-1 metric and the Lipschitz-regularized $\alpha$-divergences, the reduction of sample complexity is proportional to an ambient-dimension-dependent power of the group size. For the maximum mean discrepancy (MMD), the improvement of sample complexity is more nuanced, as it depends on not only the group size but also the choice of kernel. Numerical simulations verify our theories.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.