We rigorously quantify the improvement in the sample complexity of variational divergence estimations for group-invariant distributions. In the cases of the Wasserstein-1 metric and the Lipschitz-regularized $\alpha$-divergences, the reduction of sample complexity is proportional to an ambient-dimension-dependent power of the group size. For the maximum mean discrepancy (MMD), the improvement of sample complexity is more nuanced, as it depends on not only the group size but also the choice of kernel. Numerical simulations verify our theories.
The Gaussian kernel and its traditional normalizations (e.g., row-stochastic) are popular approaches for assessing similarities between data points. Yet, they can be inaccurate under high-dimensional noise, especially if the noise magnitude varies considerably across the data, e.g., under heteroskedasticity or outliers. In this work, we investigate a more robust alternative -- the doubly stochastic normalization of the Gaussian kernel. We consider a setting where points are sampled from an unknown density on a low-dimensional manifold embedded in high-dimensional space and corrupted by possibly strong, non-identically distributed, sub-Gaussian noise. We establish that the doubly stochastic affinity matrix and its scaling factors concentrate around certain population forms, and provide corresponding finite-sample probabilistic error bounds. We then utilize these results to develop several tools for robust inference under general high-dimensional noise. First, we derive a robust density estimator that reliably infers the underlying sampling density and can substantially outperform the standard kernel density estimator under heteroskedasticity and outliers. Second, we obtain estimators for the pointwise noise magnitudes, the pointwise signal magnitudes, and the pairwise Euclidean distances between clean data points. Lastly, we derive robust graph Laplacian normalizations that accurately approximate various manifold Laplacians, including the Laplace Beltrami operator, improving over traditional normalizations in noisy settings. We exemplify our results in simulations and on real single-cell RNA-sequencing data. For the latter, we show that in contrast to traditional methods, our approach is robust to variability in technical noise levels across cell types.
We study the problem of estimating the convex hull of the image $f(X)\subset\mathbb{R}^n$ of a compact set $X\subset\mathbb{R}^m$ with smooth boundary through a smooth function $f:\mathbb{R}^m\to\mathbb{R}^n$. Assuming that $f$ is a submersion, we derive a new bound on the Hausdorff distance between the convex hull of $f(X)$ and the convex hull of the images $f(x_i)$ of $M$ sampled inputs $x_i$ on the boundary of $X$. When applied to the problem of geometric inference from a random sample, our results give tighter and more general error bounds than the state of the art. We present applications to the problems of robust optimization, of reachability analysis of dynamical systems, and of robust trajectory optimization under bounded uncertainty.
This work addresses a version of the two-armed Bernoulli bandit problem where the sum of the means of the arms is one (the symmetric two-armed Bernoulli bandit). In a regime where the gap between these means goes to zero and the number of prediction periods approaches infinity, we obtain the leading order terms of the minmax optimal regret and pseudoregret for this problem by associating each of them with a solution of a linear heat equation. Our results improve upon the previously known results; specifically, we explicitly compute these leading order terms in three different scaling regimes for the gap. Additionally, we obtain new non-asymptotic bounds for any given time horizon.
The logistic regression model is one of the most popular data generation model in noisy binary classification problems. In this work, we study the sample complexity of estimating the parameters of the logistic regression model up to a given $\ell_2$ error, in terms of the dimension and the inverse temperature, with standard normal covariates. The inverse temperature controls the signal-to-noise ratio of the data generation process. While both generalization bounds and asymptotic performance of the maximum-likelihood estimator for logistic regression are well-studied, the non-asymptotic sample complexity that shows the dependence on error and the inverse temperature for parameter estimation is absent from previous analyses. We show that the sample complexity curve has two change-points (or critical points) in terms of the inverse temperature, clearly separating the low, moderate, and high temperature regimes.
Traditionally, the Bayesian optimal auction design problem has been considered either when the bidder values are i.i.d., or when each bidder is individually identifiable via her value distribution. The latter is a reasonable approach when the bidders can be classified into a few categories, but there are many instances where the classification of bidders is a continuum. For example, the classification of the bidders may be based on their annual income, their propensity to buy an item based on past behavior, or in the case of ad auctions, the click through rate of their ads. We introduce an alternate model that captures this aspect, where bidders are \emph{a priori} identical, but can be distinguished based (only) on some side information the auctioneer obtains at the time of the auction. We extend the sample complexity approach of Dhangwatnotai, Roughgarden, and Yan (2014) and Cole and Roughgarden (2014) to this model and obtain almost matching upper and lower bounds. As an aside, we obtain a revenue monotonicity lemma which may be of independent interest. We also show how to use Empirical Risk Minimization techniques to improve the sample complexity bound of Cole and Roughgarden (2014) for the non-identical but independent value distribution case.
In this work we study systems consisting of a group of moving particles. In such systems, often some important parameters are unknown and have to be estimated from observed data. Such parameter estimation problems can often be solved via a Bayesian inference framework. However in many practical problems, only data at the aggregate level is available and as a result the likelihood function is not available, which poses challenge for Bayesian methods. In particular, we consider the situation where the distributions of the particles are observed. We propose a Wasserstein distance based sequential Monte Carlo sampler to solve the problem: the Wasserstein distance is used to measure the similarity between the observed and the simulated particle distributions and the sequential Monte Carlo samplers is used to deal with the sequentially available observations. Two real-world examples are provided to demonstrate the performance of the proposed method.
We propose an unsupervised tree boosting algorithm for inferring the underlying sampling distribution of an i.i.d. sample based on fitting additive tree ensembles in a fashion analogous to supervised tree boosting. Integral to the algorithm is a new notion of "addition" on probability distributions that leads to a coherent notion of "residualization", i.e., subtracting a probability distribution from an observation to remove the distributional structure from the sampling distribution of the latter. We show that these notions arise naturally for univariate distributions through cumulative distribution function (CDF) transforms and compositions due to several "group-like" properties of univariate CDFs. While the traditional multivariate CDF does not preserve these properties, a new definition of multivariate CDF can restore these properties, thereby allowing the notions of "addition" and "residualization" to be formulated for multivariate settings as well. This then gives rise to the unsupervised boosting algorithm based on forward-stagewise fitting of an additive tree ensemble, which sequentially reduces the Kullback-Leibler divergence from the truth. The algorithm allows analytic evaluation of the fitted density and outputs a generative model that can be readily sampled from. We enhance the algorithm with scale-dependent shrinkage and a two-stage strategy that separately fits the marginals and the copula. The algorithm then performs competitively to state-of-the-art deep-learning approaches in multivariate density estimation on multiple benchmark data sets.
In phase-only compressive sensing (PO-CS), our goal is to recover low-complexity signals (e.g., sparse signals, low-rank matrices) from the phase of complex linear measurements. While perfect recovery of signal direction in PO-CS was observed quite early, the exact reconstruction guarantee for a fixed, real signal was recently done by Jacques and Feuillen [IEEE Trans. Inf. Theory, 67 (2021), pp. 4150-4161]. However, two questions remain open: the uniform recovery guarantee and exact recovery of complex signal. In this paper, we almost completely address these two open questions. We prove that, all complex sparse signals or low-rank matrices can be uniformly, exactly recovered from a near optimal number of complex Gaussian measurement phases. By recasting PO-CS as a linear compressive sensing problem, the exact recovery follows from restricted isometry property (RIP). Our approach to uniform recovery guarantee is based on covering arguments that involve a delicate control of the (original linear) measurements with overly small magnitude. To work with complex signal, a different sign-product embedding property and a careful rescaling of the sensing matrix are employed. In addition, we show an extension that the uniform recovery is stable under moderate bounded noise. We also propose to add Gaussian dither before capturing the phases to achieve full reconstruction with norm information. Experimental results are reported to corroborate and demonstrate our theoretical results.
Real-life tools for decision-making in many critical domains are based on ranking results. With the increasing awareness of algorithmic fairness, recent works have presented measures for fairness in ranking. Many of those definitions consider the representation of different ``protected groups'', in the top-$k$ ranked items, for any reasonable $k$. Given the protected groups, confirming algorithmic fairness is a simple task. However, the groups' definitions may be unknown in advance. In this paper, we study the problem of detecting groups with biased representation in the top-$k$ ranked items, eliminating the need to pre-define protected groups. The number of such groups possible can be exponential, making the problem hard. We propose efficient search algorithms for two different fairness measures: global representation bounds, and proportional representation. Then we propose a method to explain the bias in the representations of groups utilizing the notion of Shapley values. We conclude with an experimental study, showing the scalability of our approach and demonstrating the usefulness of the proposed algorithms.
Bid optimization for online advertising from single advertiser's perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertiser's objective and global profit have been significantly improved compared to state-of-art methods.