亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work addresses a version of the two-armed Bernoulli bandit problem where the sum of the means of the arms is one (the symmetric two-armed Bernoulli bandit). In a regime where the gap between these means goes to zero and the number of prediction periods approaches infinity, we obtain the leading order terms of the minmax optimal regret and pseudoregret for this problem by associating each of them with a solution of a linear heat equation. Our results improve upon the previously known results; specifically, we explicitly compute these leading order terms in three different scaling regimes for the gap. Additionally, we obtain new non-asymptotic bounds for any given time horizon.

相關內容

This note explores in more details instabilities of explicit super-time-stepping schemes, such as the Runge-Kutta-Chebyshev or Runge-Kutta-Legendre schemes, noticed in the litterature, when applied to the Heston stochastic volatility model. The stability remarks are relevant beyond the scope of super-time-stepping schemes.

This paper studies a class of strongly monotone games involving non-cooperative agents that optimize their own time-varying cost functions. We assume that the agents can observe other agents' historical actions and choose actions that best respond to other agents' previous actions; we call this a best response scheme. We start by analyzing the convergence rate of this best response scheme for standard time-invariant games. Specifically, we provide a sufficient condition on the strong monotonicity parameter of the time-invariant games under which the proposed best response algorithm achieves exponential convergence to the static Nash equilibrium. We further illustrate that this best response algorithm may oscillate when the proposed sufficient condition fails to hold, which indicates that this condition is tight. Next, we analyze this best response algorithm for time-varying games where the cost functions of each agent change over time. Under similar conditions as for time-invariant games, we show that the proposed best response algorithm stays asymptotically close to the evolving equilibrium. We do so by analyzing both the equilibrium tracking error and the dynamic regret. Numerical experiments on economic market problems are presented to validate our analysis.

In randomized experiments, the classic stable unit treatment value assumption (SUTVA) states that the outcome for one experimental unit does not depend on the treatment assigned to other units. However, the SUTVA assumption is often violated in applications such as online marketplaces and social networks where units interfere with each other. We consider the estimation of the average treatment effect in a network interference model using a mixed randomization design that combines two commonly used experimental methods: Bernoulli randomized design, where treatment is independently assigned for each individual unit, and cluster-based design, where treatment is assigned at an aggregate level. Essentially, a mixed randomization experiment runs these two designs simultaneously, allowing it to better measure the effect of network interference. We propose an unbiased estimator for the average treatment effect under the mixed design and show the variance of the estimator is bounded by $O({d^2}n^{-1}p^{-1})$ where $d$ is the maximum degree of the network, $n$ is the network size, and $p$ is the probability of treatment. We also establish a lower bound of $\Omega(d^{1.5}n^{-1}p^{-1})$ for the variance of any mixed design. For a family of sparse networks characterized by a growth constant $\kappa \leq d$, we improve the upper bound to $O({\kappa^7 d}n^{-1}p^{-1})$. Furthermore, when interference weights on the edges of the network are unknown, we propose a weight-invariant design that achieves a variance bound of $O({d^3}n^{-1}p^{-1})$.

Nowadays, the increasing complexity of Advanced Driver Assistance Systems (ADAS) and Automated Driving (AD) means that the industry must move towards a scenario-based approach to validation rather than relying on established technology-based methods. This new focus also requires the validation process to take into account Safety of the Intended Functionality (SOTIF), as many scenarios may trigger hazardous vehicle behaviour. Thus, this work demonstrates how the integration of the SOTIF process within an existing validation tool suite can be achieved. The necessary adaptations are explained with accompanying examples to aid comprehension of the approach.

Home automation for many years had faced challenges that limit its spreading around the world. These challenges caused by the high cost of Own such a home, inflexibility system (cannot be monitored outside the home) and issues to achieve optimal security. Our main objective is to design and implement a smart home model that is simple, affordable to the users. The proposed system provide flexibility to monitor the home, using the reliable cellular network. The user will be able what is inside the home when he /she is away from home. In addition to that, our model overcome the issue of the security by providing different sensors that detects smoke, gas, leakage of water and incases of burglary. Moreover, a camera will be available in the home to give a full view for the user when he/she is outside the home. The user will be informed by an application on his/she phone incase if there is a fire, water leakage and if someone break into the house. This will give the user a chance to take an action if such cases happened. Furthermore, the user can monitor the lighting system of the home, by giving the user a chance to turn the lights on and off remotely.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions

Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

北京阿比特科技有限公司