Offline change point detection retrospectively locates change points in a time series. Many nonparametric methods that target i.i.d. mean and variance changes fail in the presence of nonlinear temporal dependence, and model based methods require a known, rigid structure. For the at most one change point problem, we propose use of a conceptor matrix to learn the characteristic dynamics of a baseline training window with arbitrary dependence structure. The associated echo state network acts as a featurizer of the data, and change points are identified from the nature of the interactions between the features and their relationship to the baseline state. This model agnostic method can suggest potential locations of interest that warrant further study. We prove that, under mild assumptions, the method provides a consistent estimate of the true change point, and quantile estimates are produced via a moving block bootstrap of the original data. The method is evaluated with clustering metrics and Type 1 error control on simulated data, and applied to publicly available neural data from rats experiencing bouts of non-REM sleep prior to exploration of a radial maze. With sufficient spacing, the framework provides a simple extension to the sparse, multiple change point problem.
By now Bayesian methods are routinely used in practice for solving inverse problems. In inverse problems the parameter or signal of interest is observed only indirectly, as an image of a given map, and the observations are typically further corrupted with noise. Bayes offers a natural way to regularize these problems via the prior distribution and provides a probabilistic solution, quantifying the remaining uncertainty in the problem. However, the computational costs of standard, sampling based Bayesian approaches can be overly large in such complex models. Therefore, in practice variational Bayes is becoming increasingly popular. Nevertheless, the theoretical understanding of these methods is still relatively limited, especially in context of inverse problems. In our analysis we investigate variational Bayesian methods for Gaussian process priors to solve linear inverse problems. We consider both mildly and severely ill-posed inverse problems and work with the popular inducing variables variational Bayes approach proposed by Titsias in 2009. We derive posterior contraction rates for the variational posterior in general settings and show that the minimax estimation rate can be attained by correctly tunned procedures. As specific examples we consider a collection of inverse problems including the heat equation, Volterra operator and Radon transform and inducing variable methods based on population and empirical spectral features.
Learning continuous-time point processes is essential to many discrete event forecasting tasks. However, integration poses a major challenge, particularly for spatiotemporal point processes (STPPs), as it involves calculating the likelihood through triple integrals over space and time. Existing methods for integrating STPP either assume a parametric form of the intensity function, which lacks flexibility; or approximating the intensity with Monte Carlo sampling, which introduces numerical errors. Recent work by Omi et al. [2019] proposes a dual network approach for efficient integration of flexible intensity function. However, their method only focuses on the 1D temporal point process. In this paper, we introduce a novel paradigm: AutoSTPP (Automatic Integration for Spatiotemporal Neural Point Processes) that extends the dual network approach to 3D STPP. While previous work provides a foundation, its direct extension overly restricts the intensity function and leads to computational challenges. In response, we introduce a decomposable parametrization for the integral network using ProdNet. This approach, leveraging the product of simplified univariate graphs, effectively sidesteps the computational complexities inherent in multivariate computational graphs. We prove the consistency of AutoSTPP and validate it on synthetic data and benchmark real-world datasets. AutoSTPP shows a significant advantage in recovering complex intensity functions from irregular spatiotemporal events, particularly when the intensity is sharply localized. Our code is open-source at //github.com/Rose-STL-Lab/AutoSTPP.
The multiobjective evolutionary optimization algorithm (MOEA) is a powerful approach for tackling multiobjective optimization problems (MOPs), which can find a finite set of approximate Pareto solutions in a single run. However, under mild regularity conditions, the Pareto optimal set of a continuous MOP could be a low dimensional continuous manifold that contains infinite solutions. In addition, structure constraints on the whole optimal solution set, which characterize the patterns shared among all solutions, could be required in many real-life applications. It is very challenging for existing finite population based MOEAs to handle these structure constraints properly. In this work, we propose the first model-based algorithmic framework to learn the whole solution set with structure constraints for multiobjective optimization. In our approach, the Pareto optimality can be traded off with a preferred structure among the whole solution set, which could be crucial for many real-world problems. We also develop an efficient evolutionary learning method to train the set model with structure constraints. Experimental studies on benchmark test suites and real-world application problems demonstrate the promising performance of our proposed framework.
Finding topics to write about can be a mentally demanding process. However, topic hierarchies can help writers explore topics of varying levels of specificity. In this paper, we use large language models (LLMs) to help construct topic hierarchies. Although LLMs have access to such knowledge, it can be difficult to elicit due to issues of specificity, scope, and repetition. We designed and tested three different prompting techniques to find one that maximized accuracy. We found that prepending the general topic area to a prompt yielded the most accurate results with 85% accuracy. We discuss applications of this research including STEM writing, education, and content creation.
As cyclones become more intense due to climate change, the rise of AI-based modelling provides a more affordable and accessible approach compared to traditional methods based on mathematical models. This work leverages diffusion models to forecast cyclone trajectories and precipitation patterns by integrating satellite imaging, remote sensing, and atmospheric data, employing a cascaded approach that incorporates forecasting, super-resolution, and precipitation modelling, with training on a dataset of 51 cyclones from six major basins. Experiments demonstrate that the final forecasts from the cascaded models show accurate predictions up to a 36-hour rollout, with SSIM and PSNR values exceeding 0.5 and 20 dB, respectively, for all three tasks. This work also highlights the promising efficiency of AI methods such as diffusion models for high-performance needs, such as cyclone forecasting, while remaining computationally affordable, making them ideal for highly vulnerable regions with critical forecasting needs and financial limitations. Code accessible at \url{//github.com/nathzi1505/forecast-diffmodels}.
Contrastive Language-Image Pre-training (CLIP) stands as one of the most effective and scalable methods for training transferable vision models using paired image and text data. CLIP models are trained using contrastive loss, which typically relies on data augmentations to prevent overfitting and shortcuts. However, in the CLIP training paradigm, data augmentations are exclusively applied to image inputs, while language inputs remain unchanged throughout the entire training process, limiting the exposure of diverse texts to the same image. In this paper, we introduce Language augmented CLIP (LaCLIP), a simple yet highly effective approach to enhance CLIP training through language rewrites. Leveraging the in-context learning capability of large language models, we rewrite the text descriptions associated with each image. These rewritten texts exhibit diversity in sentence structure and vocabulary while preserving the original key concepts and meanings. During training, LaCLIP randomly selects either the original texts or the rewritten versions as text augmentations for each image. Extensive experiments on CC3M, CC12M, RedCaps and LAION-400M datasets show that CLIP pre-training with language rewrites significantly improves the transfer performance without computation or memory overhead during training. Specifically for ImageNet zero-shot accuracy, LaCLIP outperforms CLIP by 8.2% on CC12M and 2.4% on LAION-400M. Code is available at //github.com/LijieFan/LaCLIP.
Online convex optimization (OCO) is a widely used framework in online learning. In each round, the learner chooses a decision in a convex set and an adversary chooses a convex loss function, and then the learner suffers the loss associated with their current decision. However, in many applications the learner's loss depends not only on the current decision but on the entire history of decisions until that point. The OCO framework and its existing generalizations do not capture this, and they can only be applied to many settings of interest after a long series of approximation arguments. They also leave open the question of whether the dependence on memory is tight because there are no non-trivial lower bounds. In this work we introduce a generalization of the OCO framework, ``Online Convex Optimization with Unbounded Memory'', that captures long-term dependence on past decisions. We introduce the notion of $p$-effective memory capacity, $H_p$, that quantifies the maximum influence of past decisions on present losses. We prove an $O(\sqrt{H_p T})$ upper bound on the policy regret and a matching (worst-case) lower bound. As a special case, we prove the first non-trivial lower bound for OCO with finite memory~\citep{anavaHM2015online}, which could be of independent interest, and also improve existing upper bounds. We demonstrate the broad applicability of our framework by using it to derive regret bounds, and to improve and simplify existing regret bound derivations, for a variety of online learning problems including online linear control and an online variant of performative prediction.
As more and more decisions that have a significant ethical dimension are being outsourced to AI systems, it is important to have a definition of moral responsibility that can be applied to AI systems. Moral responsibility for an outcome of an agent who performs some action is commonly taken to involve both a causal condition and an epistemic condition: the action should cause the outcome, and the agent should have been aware -- in some form or other -- of the possible moral consequences of their action. This paper presents a formal definition of both conditions within the framework of causal models. I compare my approach to the existing approaches of Braham and van Hees (BvH) and of Halpern and Kleiman-Weiner (HK). I then generalize my definition into a degree of responsibility.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.
Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.