亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As more and more decisions that have a significant ethical dimension are being outsourced to AI systems, it is important to have a definition of moral responsibility that can be applied to AI systems. Moral responsibility for an outcome of an agent who performs some action is commonly taken to involve both a causal condition and an epistemic condition: the action should cause the outcome, and the agent should have been aware -- in some form or other -- of the possible moral consequences of their action. This paper presents a formal definition of both conditions within the framework of causal models. I compare my approach to the existing approaches of Braham and van Hees (BvH) and of Halpern and Kleiman-Weiner (HK). I then generalize my definition into a degree of responsibility.

相關內容

Autoregressive moving average (ARMA) models are frequently used to analyze time series data. Despite the popularity of these models, algorithms for fitting ARMA models have weaknesses that are not well known. We provide a summary of parameter estimation via maximum likelihood and discuss common pitfalls that may lead to sub-optimal parameter estimates. We propose a random restart algorithm for parameter estimation that frequently yields higher likelihoods than traditional maximum likelihood estimation procedures. We then investigate the parameter uncertainty of maximum likelihood estimates, and propose the use of profile confidence intervals as a superior alternative to intervals derived from the Fisher's information matrix. Through a series of simulation studies, we demonstrate the efficacy of our proposed algorithm and the improved nominal coverage of profile confidence intervals compared to the normal approximation based on Fisher's Information.

Reinforcement Learning (RL) systems can be complex and non-interpretable, making it challenging for non-AI experts to understand or intervene in their decisions. This is due in part to the sequential nature of RL in which actions are chosen because of future rewards. However, RL agents discard the qualitative features of their training, making it difficult to recover user-understandable information for "why" an action is chosen. We propose a technique, Experiential Explanations, to generate counterfactual explanations by training influence predictors along with the RL policy. Influence predictors are models that learn how sources of reward affect the agent in different states, thus restoring information about how the policy reflects the environment. A human evaluation study revealed that participants presented with experiential explanations were better able to correctly guess what an agent would do than those presented with other standard types of explanation. Participants also found that experiential explanations are more understandable, satisfying, complete, useful, and accurate. The qualitative analysis provides insights into the factors of experiential explanations that are most useful.

Deploying an algorithmically informed policy is a significant intervention in the structure of society. As is increasingly acknowledged, predictive algorithms have performative effects: using them can shift the distribution of social outcomes away from the one on which the algorithms were trained. Algorithmic fairness research is usually motivated by the worry that these performative effects will exacerbate the structural inequalities that gave rise to the training data. However, standard retrospective fairness methodologies are ill-suited to predict these effects. They impose static fairness constraints that hold after the predictive algorithm is trained, but before it is deployed and, therefore, before performative effects have had a chance to kick in. However, satisfying static fairness criteria after training is not sufficient to avoid exacerbating inequality after deployment. Addressing the fundamental worry that motivates algorithmic fairness requires explicitly comparing the change in relevant structural inequalities before and after deployment. We propose a prospective methodology for estimating this post-deployment change from pre-deployment data and knowledge about the algorithmic policy. That requires a strategy for distinguishing between, and accounting for, different kinds of performative effects. In this paper, we focus on the algorithmic effect on the causally downstream outcome variable. Throughout, we are guided by an application from public administration: the use of algorithms to (1) predict who among the recently unemployed will stay unemployed for the long term and (2) targeting them with labor market programs. We illustrate our proposal by showing how to predict whether such policies will exacerbate gender inequalities in the labor market.

Operational consistent query answering (CQA) is a recent framework for CQA based on revised definitions of repairs, which are built by applying a sequence of operations (e.g., fact deletions) starting from an inconsistent database until we reach a database that is consistent w.r.t. the given set of constraints. It has been recently shown that there are efficient approximations for computing the percentage of repairs, as well as of sequences of operations leading to repairs, that entail a given query when we focus on primary keys, conjunctive queries, and assuming the query is fixed (i.e., in data complexity). However, it has been left open whether such approximations exist when the query is part of the input (i.e., in combined complexity). We show that this is the case when we focus on self-join-free conjunctive queries of bounded generelized hypertreewidth. We also show that it is unlikely that efficient approximation schemes exist once we give up one of the adopted syntactic restrictions, i.e., self-join-freeness or bounding the generelized hypertreewidth. Towards the desired approximation schemes, we introduce a novel counting complexity class, called SpanTL, show that each problem in SpanTL admits an efficient approximation scheme by using a recent approximability result in the context of tree automata, and then place the problems of interest in SpanTL.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司