亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Weak memory models allow for simplified hardware and increased performance in the memory hierarchy at the cost of increased software complexity. In weak memory models, explicit synchronization is needed to enforce ordering between different processors. Acquire and release semantics provide a powerful primitive for expressing only the ordering required for correctness. In this project, we explore adding load-acquire and store-release instructions to the RISC-V ISA. We add support to the herd formal memory model, the gem5 cycle-approximate simulator, and the LLVM/Clang toolchain. Because these instructions do not exist in the RISC-V standard, there is an inherent urgency to ratify explicit load-acquire/store-release instructions in order to prevent multiple ABI implementations and ecosystem fragmentation. We found that for workloads with a high degree of sharing and heavy contention, the impact of less memory ordering is muted, but our changes successfully encode the semantics we desire.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 得分 · · MoDELS · 知識 (knowledge) ·
2023 年 10 月 20 日

Constructing responses in task-oriented dialogue systems typically relies on information sources such the current dialogue state or external databases. This paper presents a novel approach to knowledge-grounded response generation that combines retrieval-augmented language models with logical reasoning. The approach revolves around a knowledge graph representing the current dialogue state and background information, and proceeds in three steps. The knowledge graph is first enriched with logically derived facts inferred using probabilistic logical programming. A neural model is then employed at each turn to score the conversational relevance of each node and edge of this extended graph. Finally, the elements with highest relevance scores are converted to a natural language form, and are integrated into the prompt for the neural conversational model employed to generate the system response. We investigate the benefits of the proposed approach on two datasets (KVRET and GraphWOZ) along with a human evaluation. Experimental results show that the combination of (probabilistic) logical reasoning with conversational relevance scoring does increase both the factuality and fluency of the responses.

Training or finetuning large-scale language models (LLMs) such as GPT-3 requires substantial computation resources, motivating recent efforts to explore parameter-efficient adaptation to downstream tasks. One practical area of research is to treat these models as black boxes and interact with them through their inference APIs. In this paper, we investigate how to optimize few-shot text classification without accessing the gradients of the LLMs. To achieve this, we treat the black-box model as a feature extractor and train a classifier with the augmented text data. Data augmentation is performed using prompt-based finetuning on an auxiliary language model with a much smaller parameter size than the black-box model. Through extensive experiments on eight text classification datasets, we show that our approach, dubbed BT-Classifier, significantly outperforms state-of-the-art black-box few-shot learners and performs on par with methods that rely on full-model tuning.

We propose a novel non-negative spherical relaxation for optimization problems over binary matrices with injectivity constraints, which in particular has applications in multi-matching and clustering. We relax respective binary matrix constraints to the (high-dimensional) non-negative sphere. To optimize our relaxed problem, we use a conditional power iteration method to iteratively improve the objective function, while at same time sweeping over a continuous scalar parameter that is (indirectly) related to the universe size (or number of clusters). Opposed to existing procedures that require to fix the integer universe size before optimization, our method automatically adjusts the analogous continuous parameter. Furthermore, while our approach shares similarities with spectral multi-matching and spectral clustering, our formulation has the strong advantage that we do not rely on additional post-processing procedures to obtain binary results. Our method shows compelling results in various multi-matching and clustering settings, even when compared to methods that use the ground truth universe size (or number of clusters).

This dissertation attempts to drive innovation in the field of generative modeling for computer vision, by exploring novel formulations of conditional generative models, and innovative applications in images, 3D animations, and video. Our research focuses on architectures that offer reversible transformations of noise and visual data, and the application of encoder-decoder architectures for generative tasks and 3D content manipulation. In all instances, we incorporate conditional information to enhance the synthesis of visual data, improving the efficiency of the generation process as well as the generated content. We introduce the use of Neural ODEs to model video dynamics using an encoder-decoder architecture, demonstrating their ability to predict future video frames despite being trained solely to reconstruct current frames. Next, we propose a conditional variant of continuous normalizing flows that enables higher-resolution image generation based on lower-resolution input, achieving comparable image quality while reducing parameters and training time. Our next contribution presents a pipeline that takes human images as input, automatically aligns a user-specified 3D character with the pose of the human, and facilitates pose editing based on partial inputs. Next, we derive the relevant mathematical details for denoising diffusion models that use non-isotropic Gaussian processes, and show comparable generation quality. Finally, we devise a novel denoising diffusion framework capable of solving all three video tasks of prediction, generation, and interpolation. We perform ablation studies, and show SOTA results on multiple datasets. Our contributions are published articles at peer-reviewed venues. Overall, our research aims to make a meaningful contribution to the pursuit of more efficient and flexible generative models, with the potential to shape the future of computer vision.

This paper provides norm-based generalization bounds for the Transformer architecture that do not depend on the input sequence length. We employ a covering number based approach to prove our bounds. We use three novel covering number bounds for the function class of bounded linear transformations to upper bound the Rademacher complexity of the Transformer. Furthermore, we show this generalization bound applies to the common Transformer training technique of masking and then predicting the masked word. We also run a simulated study on a sparse majority data set that empirically validates our theoretical findings.

Explainable recommender systems (RS) have traditionally followed a one-size-fits-all approach, delivering the same explanation level of detail to each user, without considering their individual needs and goals. Further, explanations in RS have so far been presented mostly in a static and non-interactive manner. To fill these research gaps, we aim in this paper to adopt a user-centered, interactive explanation model that provides explanations with different levels of detail and empowers users to interact with, control, and personalize the explanations based on their needs and preferences. We followed a user-centered approach to design interactive explanations with three levels of detail (basic, intermediate, and advanced) and implemented them in the transparent Recommendation and Interest Modeling Application (RIMA). We conducted a qualitative user study (N=14) to investigate the impact of providing interactive explanations with varying level of details on the users' perception of the explainable RS. Our study showed qualitative evidence that fostering interaction and giving users control in deciding which explanation they would like to see can meet the demands of users with different needs, preferences, and goals, and consequently can have positive effects on different crucial aspects in explainable recommendation, including transparency, trust, satisfaction, and user experience.

We investigate the randomized and quantum communication complexities of the well-studied Equality function with small error probability $\epsilon$, getting optimal constant factors in the leading terms in a number of different models. In the randomized model, 1) we give a general technique to convert public-coin protocols to private-coin protocols by incurring a small multiplicative error, at a small additive cost. This is an improvement over Newman's theorem [Inf. Proc. Let.'91] in the dependence on the error parameter. 2) Using this we obtain a $(\log(n/\epsilon^2)+4)$-cost private-coin communication protocol that computes the $n$-bit Equality function, to error $\epsilon$. This improves upon the $\log(n/\epsilon^3)+O(1)$ upper bound implied by Newman's theorem, and matches the best known lower bound, which follows from Alon [Comb. Prob. Comput.'09], up to an additive $\log\log(1/\epsilon)+O(1)$. In the quantum model, 1) we exhibit a one-way protocol of cost $\log(n/\epsilon)+4$, that uses only pure states and computes the $n$-bit Equality function to error $\epsilon$. This bound was implicitly already shown by Nayak [PhD thesis'99]. 2) We show that any $\epsilon$-error one-way protocol for $n$-bit Equality that uses only pure states communicates at least $\log(n/\epsilon)-\log\log(1/\epsilon)-O(1)$ qubits. 3) We exhibit a one-way protocol of cost $\log(\sqrt{n}/\epsilon)+3$, that uses mixed states and computes the $n$-bit Equality function to error $\epsilon$. This is also tight up to an additive $\log\log(1/\epsilon)+O(1)$, which follows from Alon's result. 4) We study the number of EPR pairs required to be shared in an entanglement-assisted one-way protocol. Our upper bounds also yield upper bounds on the approximate rank and related measures of the Identity matrix.

The rapid development of deep learning has made a great progress in segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based segmentation algorithms. This paper offers a comprehensive review on label-efficient segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, coarse supervision, incomplete supervision and noisy supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, cross-image relation, etc. Finally, we share our opinions about the future research directions for label-efficient deep segmentation.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司