An important element of the $S$-matrix bootstrap program is the relationship between the modulus of an $S$-matrix element and its phase. Unitarity relates them by an integral equation. Even in the simplest case of elastic scattering, this integral equation cannot be solved analytically and numerical approaches are required. We apply modern machine learning techniques to studying the unitarity constraint. We find that for a given modulus, when a phase exists it can generally be reconstructed to good accuracy with machine learning. Moreover, the loss of the reconstruction algorithm provides a good proxy for whether a given modulus can be consistent with unitarity at all. In addition, we study the question of whether multiple phases can be consistent with a single modulus, finding novel phase-ambiguous solutions. In particular, we find a new phase-ambiguous solution which pushes the known limit on such solutions significantly beyond the previous bound.
A $(a,b)$-coloring of a graph $G$ associates to each vertex a $b$-subset of a set of $a$ colors in such a way that the color-sets of adjacent vertices are disjoint. We define general reduction tools for $(a,b)$-coloring of graphs for $2\le a/b\le 3$. In particular, using necessary and sufficient conditions for the existence of a $(a,b)$-coloring of a path with prescribed color-sets on its end-vertices, more complex $(a,b)$-colorability reductions are presented. The utility of these tools is exemplified on finite triangle-free induced subgraphs of the triangular lattice for which McDiarmid-Reed's conjecture asserts that they are all $(9,4)$-colorable. Computations on millions of such graphs generated randomly show that our tools allow to find a $(9,4)$-coloring for each of them except for one specific regular shape of graphs (that can be $(9,4)$-colored by an easy ad-hoc process). We thus obtain computational evidence towards the conjecture of McDiarmid\&Reed.
Bayesian optimization is an effective method for optimizing expensive-to-evaluate black-box functions. High-dimensional problems are particularly challenging as the surrogate model of the objective suffers from the curse of dimensionality, which makes accurate modeling difficult. We propose a group testing approach to identify active variables to facilitate efficient optimization in these domains. The proposed algorithm, Group Testing Bayesian Optimization (GTBO), first runs a testing phase where groups of variables are systematically selected and tested on whether they influence the objective. To that end, we extend the well-established theory of group testing to functions of continuous ranges. In the second phase, GTBO guides optimization by placing more importance on the active dimensions. By exploiting the axis-aligned subspace assumption, GTBO is competitive against state-of-the-art methods on several synthetic and real-world high-dimensional optimization tasks. Furthermore, GTBO aids in the discovery of active parameters in applications, thereby enhancing practitioners' understanding of the problem at hand.
We formalize and interpret the geometric structure of $d$-dimensional fully connected ReLU-layers in neural networks. The parameters of a ReLU-layer induce a natural partition of the input domain, such that in each sector of the partition, the ReLU-layer can be greatly simplified. This leads to a geometric interpretation of a ReLU-layer as a projection onto a polyhedral cone followed by an affine transformation, in line with the description in [doi:10.48550/arXiv.1905.08922] for convolutional networks with ReLU activations. Further, this structure facilitates simplified expressions for preimages of the intersection between partition sectors and hyperplanes, which is useful when describing decision boundaries in a classification setting. We investigate this in detail for a feed-forward network with one hidden ReLU-layer, where we provide results on the geometric complexity of the decision boundary generated by such networks, as well as proving that modulo an affine transformation, such a network can only generate $d$ different decision boundaries. Finally, the effect of adding more layers to the network is discussed.
We consider distributed optimization over a $d$-dimensional space, where $K$ remote clients send coded gradient estimates over an {\em additive Gaussian Multiple Access Channel (MAC)} with noise variance $\sigma_z^2$. Furthermore, the codewords from the clients must satisfy the average power constraint $P$, resulting in a signal-to-noise ratio (SNR) of $KP/\sigma_z^2$. In this paper, we study the fundamental limits imposed by MAC on the {convergence rate of any distributed optimization algorithm and design optimal communication schemes to achieve these limits.} Our first result is a lower bound for the convergence rate, showing that communicating over a MAC imposes a slowdown of $\sqrt{d/\frac{1}{2}\log(1+\SNR)}$ on any protocol compared to the centralized setting. Next, we design a computationally tractable {digital} communication scheme that matches the lower bound to a logarithmic factor in $K$ when combined with a projected stochastic gradient descent algorithm. At the heart of our communication scheme is carefully combining several compression and modulation ideas such as quantizing along random bases, {\em Wyner-Ziv compression}, {\em modulo-lattice decoding}, and {\em amplitude shift keying.} We also show that analog schemes, which are popular due to their ease of implementation, can give close to optimal convergence rates at low $\SNR$ but experience a slowdown of roughly $\sqrt{d}$ at high $\SNR$.
Estimating the region of attraction (${\tt RoA}$) for a robotic system's controller is essential for safe application and controller composition. Many existing methods require access to a closed-form expression that limit applicability to data-driven controllers. Methods that operate only over trajectory rollouts tend to be data-hungry. In prior work, we have demonstrated that topological tools based on Morse Graphs offer data-efficient ${\tt RoA}$ estimation without needing an analytical model. They struggle, however, with high-dimensional systems as they operate over a discretization of the state space. This paper presents ${\it Mo}$rse Graph-aided discovery of ${\it R}$egions of ${\it A}$ttraction in a learned ${\it L}$atent ${\it S}$pace (${\tt MORALS}$). The approach combines autoencoding neural networks with Morse Graphs. ${\tt MORALS}$ shows promising predictive capabilities in estimating attractors and their ${\tt RoA}$s for data-driven controllers operating over high-dimensional systems, including a 67-dim humanoid robot and a 96-dim 3-fingered manipulator. It first projects the dynamics of the controlled system into a learned latent space. Then, it constructs a reduced form of Morse Graphs representing the bistability of the underlying dynamics, i.e., detecting when the controller results in a desired versus an undesired behavior. The evaluation on high-dimensional robotic datasets indicates the data efficiency of the approach in ${\tt RoA}$ estimation.
The virtual element method (VEM) allows discretization of the problem domain with polygons in 2D. The polygons can have an arbitrary number of sides and can be concave or convex. These features, among others, are attractive for meshing complex geometries. VEM applied to linear elasticity problems is now well established. Nonlinear problems involving plasticity and hyperelasticity have also been explored by researchers using VEM. Clearly, techniques for extending the method to nonlinear problems are attractive. In this work a novel first order consistent virtual element method is applied within a static co-rotational framework. To the author's knowledge this has not appeared before in the literature with virtual elements. The formulation allows for large displacements and large rotations in a small strain setting. For some problems avoiding the complexity of finite strains, and alternative stress measures, is warranted. Furthermore, small strain plasticity is easily incorporated. The basic method, VEM specific implementation details for co-rotation, and representative benchmark problems are illustrated. Consequently, this research demonstrates that the co-rotational VEM formulation successfully solves certain classes of nonlinear solid mechanics problems. The work concludes with a discussion of results for the current formulation and future research directions.
Based on the theory of homogeneous spaces we derive \textit{geometrically optimal edge attributes} to be used within the flexible message passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions $\mathbb{R}^3$, position and orientations $\mathbb{R}^3 {\times} S^2$, and the group SE$(3)$ itself. Among these, $\mathbb{R}^3 {\times} S^2$ is an optimal choice due to the ability to represent directional information, which $\mathbb{R}^3$ methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full SE$(3)$ group. We empirically support this claim by reaching state-of-the-art results -- in accuracy and speed -- on three different benchmarks: interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.
We introduce the natural notion of a matching frame in a $2$-dimensional string. A matching frame in a $2$-dimensional $n\times m$ string $M$, is a rectangle such that the strings written on the horizontal sides of the rectangle are identical, and so are the strings written on the vertical sides of the rectangle. Formally, a matching frame in $M$ is a tuple $(u,d,\ell,r)$ such that $M[u][\ell ..r] = M[d][\ell ..r]$ and $M[u..d][\ell] = M[u..d][r]$. In this paper, we present an algorithm for finding the maximum perimeter matching frame in a matrix $M$ in $\tilde{O}(n^{2.5})$ time (assuming $n \ge m)$. Additionally, for every constant $\epsilon> 0$ we present a near-linear $(1-\epsilon)$-approximation algorithm for the maximum perimeter of a matching frame. In the development of the aforementioned algorithms, we introduce inventive technical elements and uncover distinctive structural properties that we believe will captivate the curiosity of the community.
Existing analysis of AdaGrad and other adaptive methods for smooth convex optimization is typically for functions with bounded domain diameter. In unconstrained problems, previous works guarantee an asymptotic convergence rate without an explicit constant factor that holds true for the entire function class. Furthermore, in the stochastic setting, only a modified version of AdaGrad, different from the one commonly used in practice, in which the latest gradient is not used to update the stepsize, has been analyzed. Our paper aims at bridging these gaps and developing a deeper understanding of AdaGrad and its variants in the standard setting of smooth convex functions as well as the more general setting of quasar convex functions. First, we demonstrate new techniques to explicitly bound the convergence rate of the vanilla AdaGrad for unconstrained problems in both deterministic and stochastic settings. Second, we propose a variant of AdaGrad for which we can show the convergence of the last iterate, instead of the average iterate. Finally, we give new accelerated adaptive algorithms and their convergence guarantee in the deterministic setting with explicit dependency on the problem parameters, improving upon the asymptotic rate shown in previous works.
Let $G$ be an undirected graph, and $s,t$ distinguished vertices of $G$. A minimal $s,t$-separator is an inclusion-wise minimal vertex-set whose removal places $s$ and $t$ in distinct connected components. We present an algorithm for listing the minimal $s,t$-separators of a graph, whose cardinality is at most $k$, with FPT-delay, where the parameter depends only on $k$. This problem finds applications in various algorithms parameterized by treewidth, which include query evaluation in relational databases, probabilistic inference, and many more. We also present a simple algorithm that enumerates all of the (not necessarily minimal) $s,t$-separators of a graph in ranked order by size.