We present a simple method to approximate Rao's distance between multivariate normal distributions based on discretizing curves joining normal distributions and approximating Rao's distances between successive nearby normal distributions on the curves by the square root of Jeffreys divergence, the symmetrized Kullback-Leibler divergence. We consider experimentally the linear interpolation curves in the ordinary, natural and expectation parameterizations of the normal distributions, and compare these curves with a curve derived from the Calvo and Oller's isometric embedding of the Fisher-Rao $d$-variate normal manifold into the cone of $(d+1)\times (d+1)$ symmetric positive-definite matrices [Journal of multivariate analysis 35.2 (1990): 223-242]. We report on our experiments and assess the quality of our approximation technique by comparing the numerical approximations with both lower and upper bounds. Finally, we present several information-geometric properties of the Calvo and Oller's isometric embedding.
We consider a linear model which can have a large number of explanatory variables, the errors with an asymmetric distribution or some values of the explained variable are missing at random. In order to take in account these several situations, we consider the non parametric empirical likelihood (EL) estimation method. Because a constraint in EL contains an indicator function then a smoothed function instead of the indicator will be considered. Two smoothed expectile maximum EL methods are proposed, one of which will automatically select the explanatory variables. For each of the methods we obtain the convergence rate of the estimators and their asymptotic normality. The smoothed expectile empirical log-likelihood ratio process follow asymptotically a chi-square distribution and moreover the adaptive LASSO smoothed expectile maximum EL estimator satisfies the sparsity property which guarantees the automatic selection of zero model coefficients. In order to implement these methods, we propose four algorithms.
As social issues related to gender bias attract closer scrutiny, accurate tools to determine the gender profile of large groups become essential. When explicit data is unavailable, gender is often inferred from names. Current methods follow a strategy whereby individuals of the group, one by one, are assigned a gender label or probability based on gender-name correlations observed in the population at large. We show that this strategy is logically inconsistent and has practical shortcomings, the most notable of which is the systematic underestimation of gender bias. We introduce a global inference strategy that estimates gender composition according to the context of the full list of names. The tool suffers from no intrinsic methodological effects, is robust against errors, easily implemented, and computationally light.
Several kernel based testing procedures are proposed to solve the problem of model selection in the presence of parameter estimation in a family of candidate models. Extending the two sample test of Gretton et al. (2006), we first provide a way of testing whether some data is drawn from a given parametric model (model specification). Second, we provide a test statistic to decide whether two parametric models are equally valid to describe some data (model comparison), in the spirit of Vuong (1989). All our tests are asymptotically standard normal under the null, even when the true underlying distribution belongs to the competing parametric families.Some simulations illustrate the performance of our tests in terms of power and level.
In decommissioning projects of nuclear facilities, the radiological characterisation step aims to estimate the quantity and spatial distribution of different radionuclides. To carry out the estimation, measurements are performed on site to obtain preliminary information. The usual industrial practice consists in applying spatial interpolation tools (as the ordinary kriging method) on these data to predict the value of interest for the contamination (radionuclide concentration, radioactivity, etc.) at unobserved positions. This paper questions the ordinary kriging tool on the well-known problem of the overoptimistic prediction variances due to not taking into account uncertainties on the estimation of the kriging parameters (variance and range). To overcome this issue, the practical use of the Bayesian kriging method, where the model parameters are considered as random variables, is deepened. The usefulness of Bayesian kriging, whilst comparing its performance to that of ordinary kriging, is demonstrated in the small data context (which is often the case in decommissioning projects). This result is obtained via several numerical tests on different toy models, and using complementary validation criteria: the predictivity coefficient (Q${}^2$), the Predictive Variance Adequacy (PVA), the $\alpha$-Confidence Interval plot (and its associated Mean Squared Error alpha (MSEalpha)), and the Predictive Interval Adequacy (PIA). The latter is a new criterion adapted to the Bayesian kriging results. Finally, the same comparison is performed on a real dataset coming from the decommissioning project of the CEA Marcoule G3 reactor. It illustrates the practical interest of Bayesian kriging in industrial radiological characterisation.
We present two open-source implementations of the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) algorithm to find a few eigenvalues and eigenvectors of large, possibly sparse matrices. We then test LOBPCG for various quantum chemistry problems, encompassing medium to large, dense to sparse, wellbehaved to ill-conditioned ones, where the standard method typically used is Davidson's diagonalization. Numerical tests show that, while Davidson's method remains the best choice for most applications in quantum chemistry, LOBPCG represents a competitive alternative, especially when memory is an issue, and can even outperform Davidson for ill-conditioned, non diagonally dominant problems.
We obtain bounds to quantify the distributional approximation in the delta method for vector statistics (the sample mean of $n$ independent random vectors) for normal and non-normal limits, measured using smooth test functions. For normal limits, we obtain bounds of the optimal order $n^{-1/2}$ rate of convergence, but for a wide class of non-normal limits, which includes quadratic forms amongst others, we achieve bounds with a faster order $n^{-1}$ convergence rate. We apply our general bounds to derive explicit bounds to quantify distributional approximations of an estimator for Bernoulli variance, several statistics of sample moments, order $n^{-1}$ bounds for the chi-square approximation of a family of rank-based statistics, and we also provide an efficient independent derivation of an order $n^{-1}$ bound for the chi-square approximation of Pearson's statistic. In establishing our general results, we generalise recent results on Stein's method for functions of multivariate normal random vectors to vector-valued functions and sums of independent random vectors whose components may be dependent. These bounds are widely applicable and are of independent interest.
Let $G$ be a graph on $n$ vertices of maximum degree $\Delta$. We show that, for any $\delta > 0$, the down-up walk on independent sets of size $k \leq (1-\delta)\alpha_c(\Delta)n$ mixes in time $O_{\Delta,\delta}(k\log{n})$, thereby resolving a conjecture of Davies and Perkins in an optimal form. Here, $\alpha_{c}(\Delta)n$ is the NP-hardness threshold for the problem of counting independent sets of a given size in a graph on $n$ vertices of maximum degree $\Delta$. Our mixing time has optimal dependence on $k,n$ for the entire range of $k$; previously, even polynomial mixing was not known. In fact, for $k = \Omega_{\Delta}(n)$ in this range, we establish a log-Sobolev inequality with optimal constant $\Omega_{\Delta,\delta}(1/n)$. At the heart of our proof are three new ingredients, which may be of independent interest. The first is a method for lifting $\ell_\infty$-independence from a suitable distribution on the discrete cube -- in this case, the hard-core model -- to the slice by proving stability of an Edgeworth expansion using a multivariate zero-free region for the base distribution. The second is a generalization of the Lee-Yau induction to prove log-Sobolev inequalities for distributions on the slice with considerably less symmetry than the uniform distribution. The third is a sharp decomposition-type result which provides a lossless comparison between the Dirichlet form of the original Markov chain and that of the so-called projected chain in the presence of a contractive coupling.
Several precise and computationally efficient results for pointing errors models in two asymptotic cases are derived in this paper. The normalized mean-squared error (NMSE) performance metric is employed to quantify the accuracy of different models. For the case that the beam width is relatively larger than the detection aperture, we propose the three kinds of models that have the form of $c_1\exp(-c_2r^2) $.It is shown that the modified intensity uniform model not only achieves a comparable accuracy with the best linearized model, but also is expressed in an elegant mathematical way when compared to the traditional Farid model. This indicates that the modified intensity uniform model is preferable in the performance analysis of free space optical (FSO) systems considering the effects of the pointing errors. By analogizing the beam spot with a point in the case that beam width is smaller than the detection aperture, the solution of the pointing errors model is transformed to a smooth function approximation problem, and we find that a more accurate approximation can be achieved by the proposed point approximation model when compared to the model that is induced from the Vasylyev model in some scenarios.
In this paper, we study the identifiability and the estimation of the parameters of a copula-based multivariate model when the margins are unknown and are arbitrary, meaning that they can be continuous, discrete, or mixtures of continuous and discrete. When at least one margin is not continuous, the range of values determining the copula is not the entire unit square and this situation could lead to identifiability issues that are discussed here. Next, we propose estimation methods when the margins are unknown and arbitrary, using pseudo log-likelihood adapted to the case of discontinuities. In view of applications to large data sets, we also propose a pairwise composite pseudo log-likelihood. These methodologies can also be easily modified to cover the case of parametric margins. One of the main theoretical result is an extension to arbitrary distributions of known convergence results of rank-based statistics when the margins are continuous. As a by-product, under smoothness assumptions, we obtain that the asymptotic distribution of the estimation errors of our estimators are Gaussian. Finally, numerical experiments are presented to assess the finite sample performance of the estimators, and the usefulness of the proposed methodologies is illustrated with a copula-based regression model for hydrological data. The proposed estimation is implemented in the R package CopulaInference, together with a function for checking identifiability.
We consider $t$-Lee-error-correcting codes of length $n$ over the residue ring $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$ and determine upper and lower bounds on the number of $t$-Lee-error-correcting codes. We use two different methods, namely estimating isolated nodes on bipartite graphs and the graph container method. The former gives density results for codes of fixed size and the latter for any size. This confirms some recent density results for linear Lee metric codes and provides new density results for nonlinear codes. To apply a variant of the graph container algorithm we also investigate some geometrical properties of the balls in the Lee metric.