亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study the identifiability and the estimation of the parameters of a copula-based multivariate model when the margins are unknown and are arbitrary, meaning that they can be continuous, discrete, or mixtures of continuous and discrete. When at least one margin is not continuous, the range of values determining the copula is not the entire unit square and this situation could lead to identifiability issues that are discussed here. Next, we propose estimation methods when the margins are unknown and arbitrary, using pseudo log-likelihood adapted to the case of discontinuities. In view of applications to large data sets, we also propose a pairwise composite pseudo log-likelihood. These methodologies can also be easily modified to cover the case of parametric margins. One of the main theoretical result is an extension to arbitrary distributions of known convergence results of rank-based statistics when the margins are continuous. As a by-product, under smoothness assumptions, we obtain that the asymptotic distribution of the estimation errors of our estimators are Gaussian. Finally, numerical experiments are presented to assess the finite sample performance of the estimators, and the usefulness of the proposed methodologies is illustrated with a copula-based regression model for hydrological data. The proposed estimation is implemented in the R package CopulaInference, together with a function for checking identifiability.

相關內容

We study statistical inference for the optimal transport (OT) map (also known as the Brenier map) from a known absolutely continuous reference distribution onto an unknown finitely discrete target distribution. We derive limit distributions for the $L^p$-error with arbitrary $p \in [1,\infty)$ and for linear functionals of the empirical OT map, together with their moment convergence. The former has a non-Gaussian limit, whose explicit density is derived, while the latter attains asymptotic normality. For both cases, we also establish consistency of the nonparametric bootstrap. The derivation of our limit theorems relies on new stability estimates of functionals of the OT map with respect to the dual potential vector, which may be of independent interest. We also discuss applications of our limit theorems to the construction of confidence sets for the OT map and inference for a maximum tail correlation.

Unobserved confounding is a fundamental obstacle to establishing valid causal conclusions from observational data. Two complementary types of approaches have been developed to address this obstacle: obtaining identification using fortuitous external aids, such as instrumental variables or proxies, or by means of the ID algorithm, using Markov restrictions on the full data distribution encoded in graphical causal models. In this paper we aim to develop a synthesis of the former and latter approaches to identification in causal inference to yield the most general identification algorithm in multivariate systems currently known -- the proximal ID algorithm. In addition to being able to obtain nonparametric identification in all cases where the ID algorithm succeeds, our approach allows us to systematically exploit proxies to adjust for the presence of unobserved confounders that would have otherwise prevented identification. In addition, we outline a class of estimation strategies for causal parameters identified by our method in an important special case. We illustrate our approach by simulation studies and a data application.

We develop a practical way of addressing the Errors-In-Variables (EIV) problem in the Generalized Method of Moments (GMM) framework. We focus on the settings in which the variability of the EIV is a fraction of that of the mismeasured variables, which is typical for empirical applications. For any initial set of moment conditions our approach provides a corrected set of moment conditions that are robust to the EIV. We show that the GMM estimator based on these moments is root-n-consistent, with the standard tests and confidence intervals providing valid inference. This is true even when the EIV are so large that naive estimators (that ignore the EIV problem) may be heavily biased with the confidence intervals having 0% coverage. Our approach involves no nonparametric estimation, which is particularly important for applications with multiple covariates, and settings with multivariate, serially correlated, or non-classical EIV.

Approximate message passing (AMP) is a scalable, iterative approach to signal recovery. For structured random measurement ensembles, including independent and identically distributed (i.i.d.) Gaussian and rotationally-invariant matrices, the performance of AMP can be characterized by a scalar recursion called state evolution (SE). The pseudo-Lipschitz (polynomial) smoothness is conventionally assumed. In this work, we extend the SE for AMP to a new class of measurement matrices with independent (not necessarily identically distributed) entries. We also extend it to a general class of functions, called controlled functions which are not constrained by the polynomial smoothness; unlike the pseudo-Lipschitz function that has polynomial smoothness, the controlled function grows exponentially. The lack of structure in the assumed measurement ensembles is addressed by leveraging Lindeberg-Feller. The lack of smoothness of the assumed controlled function is addressed by a proposed conditioning technique leveraging the empirical statistics of the AMP instances. The resultants grant the use of the SE to a broader class of measurement ensembles and a new class of functions.

Starting from concentration of measure hypotheses on $m$ random vectors $Z_1,\ldots, Z_m$, this article provides an expression of the concentration of functionals $\phi(Z_1,\ldots, Z_m)$ where the variations of $\phi$ on each variable depend on the product of the norms (or semi-norms) of the other variables (as if $\phi$ were a product). We illustrate the importance of this result through various generalizations of the Hanson-Wright concentration inequality as well as through a study of the random matrix $XDX^T$ and its resolvent $Q = (I_p - \frac{1}{n}XDX^T)^{-1}$, where $X$ and $D$ are random, which have fundamental interest in statistical machine learning applications.

This paper proposes and analyzes a novel fully discrete finite element scheme with the interpolation operator for stochastic Cahn-Hilliard equations with functional-type noise. The nonlinear term satisfies a one-side Lipschitz condition and the diffusion term is globally Lipschitz continuous. The novelties of this paper are threefold. First, the $L^2$-stability ($L^\infty$ in time) and the discrete $H^2$-stability ($L^2$ in time) are proved for the proposed scheme. The idea is to utilize the special structure of the matrix assembled by the nonlinear term. None of these stability results has been proved for the fully implicit scheme in existing literature due to the difficulty arising from the interaction of the nonlinearity and the multiplicative noise. Second, the higher moment stability in $L^2$-norm of the discrete solution is established based on the previous stability results. Third, the H\"older continuity in time for the strong solution is established under the minimum assumption of the strong solution. Based on these, the discrete $H^{-1}$-norm of the strong convergence is discussed. Several numerical experiments including stability and convergence are also presented to validate our theoretical results.

This paper presents a novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. We show mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach we provide a generalization of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case. We demonstrate that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. We illustrate its practical advantages by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and time series of windspeed data at six locations in California.

Dimension reduction is crucial in functional data analysis (FDA). The key tool to reduce the dimension of the data is functional principal component analysis. Existing approaches for functional principal component analysis usually involve the diagonalization of the covariance operator. With the increasing size and complexity of functional datasets, estimating the covariance operator has become more challenging. Therefore, there is a growing need for efficient methodologies to estimate the eigencomponents. Using the duality of the space of observations and the space of functional features, we propose to use the inner-product between the curves to estimate the eigenelements of multivariate and multidimensional functional datasets. The relationship between the eigenelements of the covariance operator and those of the inner-product matrix is established. We explore the application of these methodologies in several FDA settings and provide general guidance on their usability.

Given a dataset of $n$ i.i.d. samples from an unknown distribution $P$, we consider the problem of generating a sample from a distribution that is close to $P$ in total variation distance, under the constraint of differential privacy (DP). We study the problem when $P$ is a multi-dimensional Gaussian distribution, under different assumptions on the information available to the DP mechanism: known covariance, unknown bounded covariance, and unknown unbounded covariance. We present new DP sampling algorithms, and show that they achieve near-optimal sample complexity in the first two settings. Moreover, when $P$ is a product distribution on the binary hypercube, we obtain a pure-DP algorithm whereas only an approximate-DP algorithm (with slightly worse sample complexity) was previously known.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司