This paper proposes and analyzes a novel fully discrete finite element scheme with the interpolation operator for stochastic Cahn-Hilliard equations with functional-type noise. The nonlinear term satisfies a one-side Lipschitz condition and the diffusion term is globally Lipschitz continuous. The novelties of this paper are threefold. First, the $L^2$-stability ($L^\infty$ in time) and the discrete $H^2$-stability ($L^2$ in time) are proved for the proposed scheme. The idea is to utilize the special structure of the matrix assembled by the nonlinear term. None of these stability results has been proved for the fully implicit scheme in existing literature due to the difficulty arising from the interaction of the nonlinearity and the multiplicative noise. Second, the higher moment stability in $L^2$-norm of the discrete solution is established based on the previous stability results. Third, the H\"older continuity in time for the strong solution is established under the minimum assumption of the strong solution. Based on these, the discrete $H^{-1}$-norm of the strong convergence is discussed. Several numerical experiments including stability and convergence are also presented to validate our theoretical results.
A standard approach to solve ordinary differential equations, when they describe dynamical systems, is to adopt a Runge-Kutta or related scheme. Such schemes, however, are not applicable to the large class of equations which do not constitute dynamical systems. In several physical systems, we encounter integro-differential equations with memory terms where the time derivative of a state variable at a given time depends on all past states of the system. Secondly, there are equations whose solutions do not have well-defined Taylor series expansion. The Maxey-Riley-Gatignol equation, which describes the dynamics of an inertial particle in nonuniform and unsteady flow, displays both challenges. We use it as a test bed to address the questions we raise, but our method may be applied to all equations of this class. We show that the Maxey-Riley-Gatignol equation can be embedded into an extended Markovian system which is constructed by introducing a new dynamical co-evolving state variable that encodes memory of past states. We develop a Runge-Kutta algorithm for the resultant Markovian system. The form of the kernels involved in deriving the Runge-Kutta scheme necessitates the use of an expansion in powers of $t^{1/2}$. Our approach naturally inherits the benefits of standard time-integrators, namely a constant memory storage cost, a linear growth of operational effort with simulation time, and the ability to restart a simulation with the final state as the new initial condition.
Sparse regression has emerged as a popular technique for learning dynamical systems from temporal data, beginning with the SINDy (Sparse Identification of Nonlinear Dynamics) framework proposed by arXiv:1509.03580. Quantifying the uncertainty inherent in differential equations learned from data remains an open problem, thus we propose leveraging recent advances in statistical inference for sparse regression to address this issue. Focusing on systems of ordinary differential equations (ODEs), SINDy assumes that each equation is a parsimonious linear combination of a few candidate functions, such as polynomials, and uses methods such as sequentially-thresholded least squares or the Lasso to identify a small subset of these functions that govern the system's dynamics. We instead employ bias-corrected versions of the Lasso and ridge regression estimators, as well as an empirical Bayes variable selection technique known as SEMMS, to estimate each ODE as a linear combination of terms that are statistically significant. We demonstrate through simulations that this approach allows us to recover the functional terms that correctly describe the dynamics more often than existing methods that do not account for uncertainty.
This study presents a novel high-order numerical method designed for solving the two-dimensional time-fractional convection-diffusion (TFCD) equation. The Caputo definition is employed to characterize the time-fractional derivative. A weak singularity at the initial time ($t=0$) is encountered in the considered problem, which is effectively managed by adopting a discretization approach for the time-fractional derivative, where Alikhanov's high-order L2-1$_\sigma$ formula is applied on a non-uniform fitted mesh, resulting in successful tackling of the singularity. A high-order two-dimensional compact operator is implemented to approximate the spatial variables. The alternating direction implicit (ADI) approach is then employed to solve the resulting system of equations by decomposing the two-dimensional problem into two separate one-dimensional problems. The theoretical analysis, encompassing both stability and convergence aspects, has been conducted comprehensively, and it has shown that method is convergent with an order $\mathcal O\left(N_t^{-\min\{3-\alpha,\theta\alpha,1+2\alpha,2+\alpha\}}+h_x^4+h_y^4\right)$, where $\alpha\in(0,1)$ represents the order of the fractional derivative, $N_t$ is the temporal discretization parameter and $h_x$ and $h_y$ represent spatial mesh widths. Moreover, the parameter $\theta$ is utilized in the construction of the fitted mesh.
This paper focuses on investigating the density convergence of a fully discrete finite difference method when applied to numerically solve the stochastic Cahn--Hilliard equation driven by multiplicative space-time white noises. The main difficulty lies in the control of the drift coefficient that is neither globally Lipschitz nor one-sided Lipschitz. To handle this difficulty, we propose a novel localization argument and derive the strong convergence rate of the numerical solution to estimate the total variation distance between the exact and numerical solutions. This along with the existence of the density of the numerical solution finally yields the convergence of density in $L^1(\mathbb{R})$ of the numerical solution. Our results partially answer positively to the open problem emerged in [J. Cui and J. Hong, J. Differential Equations (2020)] on computing the density of the exact solution numerically.
This paper studies the fusogenicity of cationic liposomes in relation to their surface distribution of cationic lipids and utilizes membrane phase separation to control this surface distribution. It is found that concentrating the cationic lipids into small surface patches on liposomes, through phase-separation, can enhance liposome's fusogenicity. Further concentrating these lipids into smaller patches on the surface of liposomes led to an increased level of fusogenicity. These experimental findings are supported by numerical simulations using a mathematical model for phase-separated charged liposomes. Findings of this study may be used for design and development of highly fusogenic liposomes with minimal level of toxicity.
We consider the fundamental task of optimizing a real-valued function defined in a potentially high-dimensional Euclidean space, such as the loss function in many machine-learning tasks or the logarithm of the probability distribution in statistical inference. We use the warped Riemannian geometry notions to redefine the optimisation problem of a function on Euclidean space to a Riemannian manifold with a warped metric, and then find the function's optimum along this manifold. The warped metric chosen for the search domain induces a computational friendly metric-tensor for which optimal search directions associate with geodesic curves on the manifold becomes easier to compute. Performing optimization along geodesics is known to be generally infeasible, yet we show that in this specific manifold we can analytically derive Taylor approximations up to third-order. In general these approximations to the geodesic curve will not lie on the manifold, however we construct suitable retraction maps to pull them back onto the manifold. Therefore, we can efficiently optimize along the approximate geodesic curves. We cover the related theory, describe a practical optimization algorithm and empirically evaluate it on a collection of challenging optimisation benchmarks. Our proposed algorithm, using third-order approximation of geodesics, outperforms standard Euclidean gradient-based counterparts in term of number of iterations until convergence and an alternative method for Hessian-based optimisation routines.
We propose a generalization of nonlinear stability of numerical one-step integrators to Riemannian manifolds in the spirit of Butcher's notion of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce non-expansive systems on such manifolds and define B-stability of integrators. In this first exposition, we provide concrete results for a geodesic version of the Implicit Euler (GIE) scheme. We prove that the GIE method is B-stable on Riemannian manifolds with non-positive sectional curvature. We show through numerical examples that the GIE method is expansive when applied to a certain non-expansive vector field on the 2-sphere, and that the GIE method does not necessarily possess a unique solution for large enough step sizes. Finally, we derive a new improved global error estimate for general Lie group integrators.
Latitude on the choice of initialisation is a shared feature between one-step extended state-space and multi-step methods. The paper focuses on lattice Boltzmann schemes, which can be interpreted as examples of both previous categories of numerical schemes. We propose a modified equation analysis of the initialisation schemes for lattice Boltzmann methods, determined by the choice of initial data. These modified equations provide guidelines to devise and analyze the initialisation in terms of order of consistency with respect to the target Cauchy problem and time smoothness of the numerical solution. In detail, the larger the number of matched terms between modified equations for initialisation and bulk methods, the smoother the obtained numerical solution. This is particularly manifest for numerical dissipation. Starting from the constraints to achieve time smoothness, which can quickly become prohibitive for they have to take the parasitic modes into consideration, we explain how the distinct lack of observability for certain lattice Boltzmann schemes -- seen as dynamical systems on a commutative ring -- can yield rather simple conditions and be easily studied as far as their initialisation is concerned. This comes from the reduced number of initialisation schemes at the fully discrete level. These theoretical results are successfully assessed on several lattice Boltzmann methods.
We introduce and analyze a symmetric low-regularity scheme for the nonlinear Schr\"odinger (NLS) equation beyond classical Fourier-based techniques. We show fractional convergence of the scheme in $L^2$-norm, from first up to second order, both on the torus $\mathbb{T}^d$ and on a smooth bounded domain $\Omega \subset \mathbb{R}^d$, $d\le 3$, equipped with homogeneous Dirichlet boundary condition. The new scheme allows for a symmetric approximation to the NLS equation in a more general setting than classical splitting, exponential integrators, and low-regularity schemes (i.e. under lower regularity assumptions, on more general domains, and with fractional rates). We motivate and illustrate our findings through numerical experiments, where we witness better structure preserving properties and an improved error-constant in low-regularity regimes.
In this paper, we introduce a novel numerical approach for approximating the SIR model in epidemiology. Our method enhances the existing linearization procedure by incorporating a suitable relaxation term to tackle the transcendental equation of nonlinear type. Developed within the continuous framework, our relaxation method is explicit and easy to implement, relying on a sequence of linear differential equations. This approach yields accurate approximations in both discrete and analytical forms. Through rigorous analysis, we prove that, with an appropriate choice of the relaxation parameter, our numerical scheme is non-negativity-preserving and globally strongly convergent towards the true solution. These theoretical findings have not received sufficient attention in various existing SIR solvers. We also extend the applicability of our relaxation method to handle some variations of the traditional SIR model. Finally, we present numerical examples using simulated data to demonstrate the effectiveness of our proposed method.