亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Sparse regression has emerged as a popular technique for learning dynamical systems from temporal data, beginning with the SINDy (Sparse Identification of Nonlinear Dynamics) framework proposed by arXiv:1509.03580. Quantifying the uncertainty inherent in differential equations learned from data remains an open problem, thus we propose leveraging recent advances in statistical inference for sparse regression to address this issue. Focusing on systems of ordinary differential equations (ODEs), SINDy assumes that each equation is a parsimonious linear combination of a few candidate functions, such as polynomials, and uses methods such as sequentially-thresholded least squares or the Lasso to identify a small subset of these functions that govern the system's dynamics. We instead employ bias-corrected versions of the Lasso and ridge regression estimators, as well as an empirical Bayes variable selection technique known as SEMMS, to estimate each ODE as a linear combination of terms that are statistically significant. We demonstrate through simulations that this approach allows us to recover the functional terms that correctly describe the dynamics more often than existing methods that do not account for uncertainty.

相關內容

We couple the L1 discretization of the Caputo fractional derivative in time with the Galerkin scheme to devise a linear numerical method for the semilinear subdiffusion equation. Two important points that we make are: nonsmooth initial data and time-dependent diffusion coefficient. We prove the stability and convergence of the method under weak assumptions concerning regularity of the diffusivity. We find optimal pointwise in space and global in time errors, which are verified with several numerical experiments.

The elliptic curve discrete logarithm problem is of fundamental importance in public-key cryptography. It is in use for a long time. Moreover, it is an interesting challenge in computational mathematics. Its solution is supposed to provide interesting research directions. In this paper, we explore ways to solve the elliptic curve discrete logarithm problem. Our results are mostly computational. However, it seems, the methods that we develop and directions that we pursue can provide a potent attack on this problem. This work follows our earlier work, where we tried to solve this problem by finding a zero minor in a matrix over the same finite field on which the elliptic curve is defined. This paper is self-contained.

Due to the importance of linear algebra and matrix operations in data analytics, there is significant interest in using relational query optimization and processing techniques for evaluating (sparse) linear algebra programs. In particular, in recent years close connections have been established between linear algebra programs and relational algebra that allow transferring optimization techniques of the latter to the former. In this paper, we ask ourselves which linear algebra programs in MATLANG correspond to the free-connex and q-hierarchical fragments of conjunctive first-order logic. Both fragments have desirable query processing properties: free-connex conjunctive queries support constant-delay enumeration after a linear-time preprocessing phase, and q-hierarchical conjunctive queries further allow constant-time updates. By characterizing the corresponding fragments of MATLANG, we hence identify the fragments of linear algebra programs that one can evaluate with constant-delay enumeration after linear-time preprocessing and with constant-time updates. To derive our results, we improve and generalize previous correspondences between MATLANG and relational algebra evaluated over semiring-annotated relations. In addition, we identify properties on semirings that allow to generalize the complexity bounds for free-connex and q-hierarchical conjunctive queries from Boolean annotations to general semirings.

We propose a finite element discretization for the steady, generalized Navier-Stokes equations for fluids with shear-dependent viscosity, completed with inhomogeneous Dirichlet boundary conditions and an inhomogeneous divergence constraint. We establish (weak) convergence of discrete solutions as well as a priori error estimates for the velocity vector field and the scalar kinematic pressure. Numerical experiments complement the theoretical findings.

The spectral clustering algorithm is often used as a binary clustering method for unclassified data by applying the principal component analysis. To study theoretical properties of the algorithm, the assumption of conditional homoscedasticity is often supposed in existing studies. However, this assumption is restrictive and often unrealistic in practice. Therefore, in this paper, we consider the allometric extension model, that is, the directions of the first eigenvectors of two covariance matrices and the direction of the difference of two mean vectors coincide, and we provide a non-asymptotic bound of the error probability of the spectral clustering algorithm for the allometric extension model. As a byproduct of the result, we obtain the consistency of the clustering method in high-dimensional settings.

We introduce a proof-theoretic method for showing nondefinability of second-order intuitionistic connectives by quantifier-free schemata. We apply the method to confirm that Taranovsky's "realizability disjunction" connective does not admit a quantifier-free definition, and use it to obtain new results and more nuanced information about the nondefinability of Kreisel's and Po{\l}acik's unary connectives. The finitary and combinatorial nature of our method makes it more resilient to changes in metatheory than common semantic approaches, whose robustness tends to waver once we pass to non-classical and especially anti-classical settings. Furthermore, we can easily transcribe the problem-specific subproofs into univalent type theory and check them using the Agda proof assistant.

Deep learning-based numerical schemes for solving high-dimensional backward stochastic differential equations (BSDEs) have recently raised plenty of scientific interest. While they enable numerical methods to approximate very high-dimensional BSDEs, their reliability has not been studied and is thus not understood. In this work, we study uncertainty quantification (UQ) for a class of deep learning-based BSDE schemes. More precisely, we review the sources of uncertainty involved in the schemes and numerically study the impact of different sources. Usually, the standard deviation (STD) of the approximate solutions obtained from multiple runs of the algorithm with different datasets is calculated to address the uncertainty. This approach is computationally quite expensive, especially for high-dimensional problems. Hence, we develop a UQ model that efficiently estimates the STD of the approximate solution using only a single run of the algorithm. The model also estimates the mean of the approximate solution, which can be leveraged to initialize the algorithm and improve the optimization process. Our numerical experiments show that the UQ model produces reliable estimates of the mean and STD of the approximate solution for the considered class of deep learning-based BSDE schemes. The estimated STD captures multiple sources of uncertainty, demonstrating its effectiveness in quantifying the uncertainty. Additionally, the model illustrates the improved performance when comparing different schemes based on the estimated STD values. Furthermore, it can identify hyperparameter values for which the scheme achieves good approximations.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

北京阿比特科技有限公司