In this work, we consider a class of dynamical systems described by ordinary differential equations under the assumption that the global asymptotic stability (GAS) of equilibrium points is established based on the Lyapunov stability theory with the help of quadratic Lyapunov functions. We employ the Micken's methodology to construct a family of explicit nonstandard finite difference (NSFD) methods preserving any given quadratic Lyapunov function $V$, i.e. they admit $V$ as a discrete Lyapunov function. Here, the proposed NSFD methods are derived from a novel non-local approximation for the zero vector function. Through rigorous mathematical analysis, we show that the constructed NSFD methods have the ability to preserve any given quadratic Lyapunov functions regardless of the values of the step size. As an important consequence, they are dynamically consistent with respect to the GAS of continuous-time dynamical systems. On the other hand, the positivity of the proposed NSFD methods is investigated. It is proved that they can also preserve the positivity of solutions of continuous-time dynamical systems. Finally, the theoretical findings are supported by a series of illustrative numerical experiments, in which advantages of the NSFD methods are demonstrated.
In this paper, we propose to consider various models of pattern recognition. At the same time, it is proposed to consider models in the form of two operators: a recognizing operator and a decision rule. Algebraic operations are introduced on recognizing operators, and based on the application of these operators, a family of recognizing algorithms is created. An upper estimate is constructed for the model, which guarantees the completeness of the extension.
In this paper, we provide an analysis of a recently proposed multicontinuum homogenization technique. The analysis differs from those used in classical homogenization methods for several reasons. First, the cell problems in multicontinuum homogenization use constraint problems and can not be directly substituted into the differential operator. Secondly, the problem contains high contrast that remains in the homogenized problem. The homogenized problem averages the microstructure while containing the small parameter. In this analysis, we first based on our previous techniques, CEM-GMsFEM, to define a CEM-downscaling operator that maps the multicontinuum quantities to an approximated microscopic solution. Following the regularity assumption of the multicontinuum quantities, we construct a downscaling operator and the homogenized multicontinuum equations using the information of linear approximation of the multicontinuum quantities. The error analysis is given by the residual estimate of the homogenized equations and the well-posedness assumption of the homogenized equations.
Although Regge finite element functions are not continuous, useful generalizations of nonlinear derivatives like the curvature, can be defined using them. This paper is devoted to studying the convergence of the finite element lifting of a generalized (distributional) Gauss curvature defined using a metric tensor in the Regge finite element space. Specifically, we investigate the interplay between the polynomial degree of the curvature lifting by Lagrange elements and the degree of the metric tensor in the Regge finite element space. Previously, a superconvergence result, where convergence rate of one order higher than expected, was obtained when the metric is the canonical Regge interpolant of the exact metric. In this work, we show that an even higher order can be obtained if the degree of the curvature lifting is reduced by one polynomial degre and if at least linear Regge elements are used. These improved convergence rates are confirmed by numerical examples.
Recently, addressing spatial confounding has become a major topic in spatial statistics. However, the literature has provided conflicting definitions, and many proposed definitions do not address the issue of confounding as it is understood in causal inference. We define spatial confounding as the existence of an unmeasured causal confounder with a spatial structure. We present a causal inference framework for nonparametric identification of the causal effect of a continuous exposure on an outcome in the presence of spatial confounding. We propose double machine learning (DML), a procedure in which flexible models are used to regress both the exposure and outcome variables on confounders to arrive at a causal estimator with favorable robustness properties and convergence rates, and we prove that this approach is consistent and asymptotically normal under spatial dependence. As far as we are aware, this is the first approach to spatial confounding that does not rely on restrictive parametric assumptions (such as linearity, effect homogeneity, or Gaussianity) for both identification and estimation. We demonstrate the advantages of the DML approach analytically and in simulations. We apply our methods and reasoning to a study of the effect of fine particulate matter exposure during pregnancy on birthweight in California.
In this study, we consider a class of linear matroid interdiction problems, where the feasible sets for the upper-level decision-maker (referred to as the leader) and the lower-level decision-maker (referred to as the follower) are given by partition matroids with a common ground set. In contrast to classical network interdiction models where the leader is subject to a single budget constraint, in our setting, both the leader and the follower are subject to several independent cardinality constraints and engage in a zero-sum game. While a single-level linear integer programming problem over a partition matroid is known to be polynomially solvable, we prove that the considered bilevel problem is NP-hard, even when the objective function coefficients are all binary. On a positive note, it turns out that, if the number of cardinality constraints is fixed for either the leader or the follower, then the considered class of bilevel problems admits several polynomial-time solution schemes. Specifically, these schemes are based on a single-level dual reformulation, a dynamic programming-based approach, and a 2-flip local search algorithm for the leader.
We develop a numerical method for the Westervelt equation, an important equation in nonlinear acoustics, in the form where the attenuation is represented by a class of non-local in time operators. A semi-discretisation in time based on the trapezoidal rule and A-stable convolution quadrature is stated and analysed. Existence and regularity analysis of the continuous equations informs the stability and error analysis of the semi-discrete system. The error analysis includes the consideration of the singularity at $t = 0$ which is addressed by the use of a correction in the numerical scheme. Extensive numerical experiments confirm the theory.
We study the complexity (that is, the weight of the multiplication table) of the elliptic normal bases introduced by Couveignes and Lercier. We give an upper bound on the complexity of these elliptic normal bases, and we analyze the weight of some special vectors related to the multiplication table of those bases. This analysis leads us to some perspectives on the search for low complexity normal bases from elliptic periods.
In this paper, we formulate and analyse a geometric low-regularity integrator for solving the nonlinear Klein-Gordon equation in the $d$-dimensional space with $d=1,2,3$. The integrator is constructed based on the two-step trigonometric method and thus it has a simple form. Error estimates are rigorously presented to show that the integrator can achieve second-order time accuracy in the energy space under the regularity requirement in $H^{1+\frac{d}{4}}\times H^{\frac{d}{4}}$. Moreover, the time symmetry of the scheme ensures its good long-time energy conservation which is rigorously proved by the technique of modulated Fourier expansions. A numerical test is presented and the numerical results demonstrate the superiorities of the new integrator over some existing methods.
In this paper, we study the perturbation analysis of a class of composite optimization problems, which is a very convenient and unified framework for developing both theoretical and algorithmic issues of constrained optimization problems. The underlying theme of this paper is very important in both theoretical and computational study of optimization problems. Under some mild assumptions on the objective function, we provide a definition of a strong second order sufficient condition (SSOSC) for the composite optimization problem and also prove that the following conditions are equivalent to each other: the SSOSC and the nondegeneracy condition, the nonsingularity of Clarke's generalized Jacobian of the nonsmooth system at a Karush-Kuhn-Tucker (KKT) point, and the strong regularity of the KKT point. These results provide an important way to characterize the stability of the KKT point. As for the convex composite optimization problem, which is a special case of the general problem, we establish the equivalence between the primal/dual second order sufficient condition and the dual/primal strict Robinson constraint qualification, the equivalence between the primal/dual SSOSC and the dual/primal nondegeneracy condition. Moreover, we prove that the dual nondegeneracy condition and the nonsingularity of Clarke's generalized Jacobian of the subproblem corresponding to the augmented Lagrangian method are also equivalent to each other. These theoretical results lay solid foundation for designing an efficient algorithm.
In this paper, we consider a numerical method for the multi-term Caputo-Fabrizio time-fractional diffusion equations (with orders $\alpha_i\in(0,1)$, $i=1,2,\cdots,n$). The proposed method employs a fast finite difference scheme to approximate multi-term fractional derivatives in time, requiring only $O(1)$ storage and $O(N_T)$ computational complexity, where $N_T$ denotes the total number of time steps. Then we use a Legendre spectral collocation method for spatial discretization. The stability and convergence of the scheme have been thoroughly discussed and rigorously established. We demonstrate that the proposed scheme is unconditionally stable and convergent with an order of $O(\left(\Delta t\right)^{2}+N^{-m})$, where $\Delta t$, $N$, and $m$ represent the timestep size, polynomial degree, and regularity in the spatial variable of the exact solution, respectively. Numerical results are presented to validate the theoretical predictions.