Modern software development is based on a series of rapid incremental changes collaboratively made to large source code repositories by developers with varying experience and expertise levels. The ZeroIn project is aimed at analyzing the metadata of these dynamic phenomena, including the data on repositories, commits, and developers, to rapidly and accurately mark the quality of commits as they arrive at the repositories. In this context, the present article presents a characterization of the software development metadata in terms of distributions of data that best captures the trends in the datasets. Multiple datasets are analyzed for this purpose, including Stack Overflow on developers' features and GitHub data on over 452 million repositories with 16 million commits. This characterization is intended to make it possible to generate multiple synthetic datasets that can be used in training and testing novel machine learning-based solutions to improve the reliability of software even as it evolves. It is also aimed at serving the development process to exploit the latent correlations among many key feature vectors across the aggregate space of repositories and developers. The data characterization of this article is designed to feed into the machine learning components of ZeroIn, including the application of binary classifiers for early flagging of buggy software commits and the development of graph-based learning methods to exploit sparse connectivity among the sets of repositories, commits, and developers.
The feasibility of performing airborne and ground manipulation, perception, and reconnaissance using wheeled rovers, unmanned aerial vehicles, CubeSats, SmallSats and more have been evaluated before. Among all of these solutions, balloon-based systems possess merits that make them extremely attractive, e.g., a simple operation mechanism and endured operation time. However, there are many hurdles to overcome to achieve robust loitering performance in balloon-based applications. We attempt to identify design and control challenges, and propose a novel robotic platform that allows for the application of balloons in the reconnaissance and perception of Mars craters. This work briefly covers our suggested actuation and Model Predictive Control design framework for steering such balloon systems. We propose the coordinated servoing of multiple unmanned ground vehicles (UGVs) to regulate tension forces in a cable-driven balloon to which an underactuated hanging payload is attached.
The success of deep learning comes from its ability to capture the hierarchical structure of data by learning high-level representations defined in terms of low-level ones. In this paper we explore self-supervised learning of hierarchical representations of speech by applying multiple levels of Contrastive Predictive Coding (CPC). We observe that simply stacking two CPC models does not yield significant improvements over single-level architectures. Inspired by the fact that speech is often described as a sequence of discrete units unevenly distributed in time, we propose a model in which the output of a low-level CPC module is non-uniformly downsampled to directly minimize the loss of a high-level CPC module. The latter is designed to also enforce a prior of separability and discreteness in its representations by enforcing dissimilarity of successive high-level representations through focused negative sampling, and by quantization of the prediction targets. Accounting for the structure of the speech signal improves upon single-level CPC features and enhances the disentanglement of the learned representations, as measured by downstream speech recognition tasks, while resulting in a meaningful segmentation of the signal that closely resembles phone boundaries.
To obtain higher sample efficiency and superior final performance simultaneously has been one of the major challenges for deep reinforcement learning (DRL). Previous work could handle one of these challenges but typically failed to address them concurrently. In this paper, we try to tackle these two challenges simultaneously. To achieve this, we firstly decouple these challenges into two classic RL problems: data richness and exploration-exploitation trade-off. Then, we cast these two problems into the training data distribution optimization problem, namely to obtain desired training data within limited interactions, and address them concurrently via i) explicit modeling and control of the capacity and diversity of behavior policy and ii) more fine-grained and adaptive control of selective/sampling distribution of the behavior policy using a monotonic data distribution optimization. Finally, we integrate this process into Generalized Policy Iteration (GPI) and obtain a more general framework called Generalized Data Distribution Iteration (GDI). We use the GDI framework to introduce operator-based versions of well-known RL methods from DQN to Agent57. Theoretical guarantee of the superiority of GDI compared with GPI is concluded. We also demonstrate our state-of-the-art (SOTA) performance on Arcade Learning Environment (ALE), wherein our algorithm has achieved 9620.33% mean human normalized score (HNS), 1146.39% median HNS and surpassed 22 human world records using only 200M training frames. Our performance is comparable to Agent57's while we consume 500 times less data. We argue that there is still a long way to go before obtaining real superhuman agents in ALE.
Recent studies of distributed computation with formal privacy guarantees, such as differentially private (DP) federated learning, leverage random sampling of clients in each round (privacy amplification by subsampling) to achieve satisfactory levels of privacy. Achieving this however requires strong assumptions which may not hold in practice, including precise and uniform subsampling of clients, and a highly trusted aggregator to process clients' data. In this paper, we explore a more practical protocol, shuffled check-in, to resolve the aforementioned issues. The protocol relies on client making independent and random decision to participate in the computation, freeing the requirement of server-initiated subsampling, and enabling robust modelling of client dropouts. Moreover, a weaker trust model known as the shuffle model is employed instead of using a trusted aggregator. To this end, we introduce new tools to characterize the R\'enyi differential privacy (RDP) of shuffled check-in. We show that our new techniques improve at least three times in privacy guarantee over those using approximate DP's strong composition at various parameter regimes. Furthermore, we provide a numerical approach to track the privacy of generic shuffled check-in mechanism including distributed stochastic gradient descent (SGD) with Gaussian mechanism. To the best of our knowledge, this is also the first evaluation of Gaussian mechanism within the local/shuffle model under the distributed setting in the literature, which can be of independent interest.
In modern machine learning, users often have to collaborate to learn the distribution of the data. Communication can be a significant bottleneck. Prior work has studied homogeneous users -- i.e., whose data follow the same discrete distribution -- and has provided optimal communication-efficient methods for estimating that distribution. However, these methods rely heavily on homogeneity, and are less applicable in the common case when users' discrete distributions are heterogeneous. Here we consider a natural and tractable model of heterogeneity, where users' discrete distributions only vary sparsely, on a small number of entries. We propose a novel two-stage method named SHIFT: First, the users collaborate by communicating with the server to learn a central distribution; relying on methods from robust statistics. Then, the learned central distribution is fine-tuned to estimate their respective individual distribution. We show that SHIFT is minimax optimal in our model of heterogeneity and under communication constraints. Further, we provide experimental results using both synthetic data and $n$-gram frequency estimation in the text domain, which corroborate its efficiency.
This letter studies a vertical federated edge learning (FEEL) system for collaborative objects/human motion recognition by exploiting the distributed integrated sensing and communication (ISAC). In this system, distributed edge devices first send wireless signals to sense targeted objects/human, and then exchange intermediate computed vectors (instead of raw sensing data) for collaborative recognition while preserving data privacy. To boost the spectrum and hardware utilization efficiency for FEEL, we exploit ISAC for both target sensing and data exchange, by employing dedicated frequency-modulated continuous-wave (FMCW) signals at each edge device. Under this setup, we propose a vertical FEEL framework for realizing the recognition based on the collected multi-view wireless sensing data. In this framework, each edge device owns an individual local L-model to transform its sensing data into an intermediate vector with relatively low dimensions, which is then transmitted to a coordinating edge device for final output via a common downstream S-model. By considering a human motion recognition task, experimental results show that our vertical FEEL based approach achieves recognition accuracy up to 98\% with an improvement up to 8\% compared to the benchmarks, including on-device training and horizontal FEEL.
The creation and destruction of agents in cooperative multi-agent reinforcement learning (MARL) is a critically under-explored area of research. Current MARL algorithms often assume that the number of agents within a group remains fixed throughout an experiment. However, in many practical problems, an agent may terminate before their teammates. This early termination issue presents a challenge: the terminated agent must learn from the group's success or failure which occurs beyond its own existence. We refer to propagating value from rewards earned by remaining teammates to terminated agents as the Posthumous Credit Assignment problem. Current MARL methods handle this problem by placing these agents in an absorbing state until the entire group of agents reaches a termination condition. Although absorbing states enable existing algorithms and APIs to handle terminated agents without modification, practical training efficiency and resource use problems exist. In this work, we first demonstrate that sample complexity increases with the quantity of absorbing states in a toy supervised learning task for a fully connected network, while attention is more robust to variable size input. Then, we present a novel architecture for an existing state-of-the-art MARL algorithm which uses attention instead of a fully connected layer with absorbing states. Finally, we demonstrate that this novel architecture significantly outperforms the standard architecture on tasks in which agents are created or destroyed within episodes as well as standard multi-agent coordination tasks.
Adversarial training for neural networks has been in the limelight in recent years. The advancement in neural network architectures over the last decade has led to significant improvement in their performance. It sparked an interest in their deployment for real-time applications. This process initiated the need to understand the vulnerability of these models to adversarial attacks. It is instrumental in designing models that are robust against adversaries. Recent works have proposed novel techniques to counter the adversaries, most often sacrificing natural accuracy. Most suggest training with an adversarial version of the inputs, constantly moving away from the original distribution. The focus of our work is to use abstract certification to extract a subset of inputs for (hence we call it 'soft') adversarial training. We propose a training framework that can retain natural accuracy without sacrificing robustness in a constrained setting. Our framework specifically targets moderately critical applications which require a reasonable balance between robustness and accuracy. The results testify to the idea of soft adversarial training for the defense against adversarial attacks. At last, we propose the scope of future work for further improvement of this framework.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.