亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the effectiveness of a simple approach to develop a small base language model (LM) starting from an existing large base LM: first inherit a few transformer blocks from the larger LM, and then train this smaller model on a very small subset (0.1\%) of the raw pretraining data of the larger model. We call our simple recipe Inheritune and first demonstrate it for building a small base LM with 1.5B parameters using 1B tokens (and a starting few layers of larger LM of 3B parameters); we do this using a single A6000 GPU for less than half a day. Across 9 diverse evaluation datasets as well as the MMLU benchmark, the resulting model compares favorably to publicly available base models of 1B-2B size, some of which have been trained using 50-1000 times more tokens. We investigate Inheritune in a slightly different setting where we train small LMs utilizing larger LMs and their full pre-training dataset. Here we show that smaller LMs trained utilizing some of the layers of GPT2-medium (355M) and GPT-2-large (770M) can effectively match the val loss of their bigger counterparts when trained from scratch for the same number of training steps on OpenWebText dataset with 9B tokens. We analyze our recipe with extensive experiments and demonstrate it efficacy on diverse settings. Our code is available at //github.com/sanyalsunny111/LLM-Inheritune.

相關內容

Vision-language pre-training (VLP) has arised as an efficient scheme for multimodal representation learning, but it requires large-scale multimodal data for pre-training, making it an obstacle especially for medical applications. To overcome the data limitation, federated learning (FL) can be a promising strategy to scale up the dataset for medical VLP while protecting data privacy. However, client data are often heterogeneous in real-world scenarios, and we observe that local training on heterogeneous client data would distort the multimodal representation learning and lead to biased cross-modal alignment. To address this challenge, we propose a Federated Align as IDeal (FedAID) framework for federated VLP with robustness to data heterogeneity, to bind local clients with an ideal crossmodal alignment. Specifically, to reduce distortions on global-aggregated features while learning diverse semantics from client datasets during local training, we propose to bind the cross-model aligned representation space learned by local models with an unbiased one via guidance-based regularization. Moreover, we employ a distribution-based min-max optimization to learn the unbiased cross-modal alignment at each communication turn of federated pre-training. The experiments on real-world datasets demonstrate our method successfully promotes efficient federated multimodal learning for medical VLP with data heterogeneity.

Sparse models, including sparse Mixture-of-Experts (MoE) models, have emerged as an effective approach for scaling Transformer models. However, they often suffer from computational inefficiency since a significant number of parameters are unnecessarily involved in computations via multiplying values by zero or low activation values. To address this issue, we present \tool, a novel MoE designed to enhance both the efficacy and efficiency of sparse MoE models. \tool leverages small experts and a threshold-based router to enable tokens to selectively engage only essential parameters. Our extensive experiments on language modeling and machine translation tasks demonstrate that \tool can enhance model performance while decreasing the computation load at MoE layers by over 50\% without sacrificing performance. Furthermore, we present the versatility of \tool by applying it to dense models, enabling sparse computation during inference. We provide a comprehensive analysis and make our code available at //github.com/ysngki/XMoE.

We present a framework of elastic locomotion, which allows users to enliven an elastic body to produce interesting locomotion by prescribing its high-level kinematics. We formulate this problem as an inverse simulation problem and seek the optimal muscle activations to drive the body to complete the desired actions. We employ the interior-point method to model wide-area contacts between the body and the environment with logarithmic barrier penalties. The core of our framework is a mixed second-order differentiation algorithm. By combining both analytic differentiation and numerical differentiation modalities, a general-purpose second-order differentiation scheme is made possible. Specifically, we augment complex-step finite difference (CSFD) with reverse automatic differentiation (AD). We treat AD as a generic function, mapping a computing procedure to its derivative w.r.t. output loss, and promote CSFD along the AD computation. To this end, we carefully implement all the arithmetics used in elastic locomotion, from elementary functions to linear algebra and matrix operation for CSFD promotion. With this novel differentiation tool, elastic locomotion can directly exploit Newton's method and use its strong second-order convergence to find the needed activations at muscle fibers. This is not possible with existing first-order inverse or differentiable simulation techniques. We showcase a wide range of interesting locomotions of soft bodies and creatures to validate our method.

Editing knowledge in large language models is an attractive capability to have which allows us to correct incorrectly learnt facts during pre-training, as well as update the model with an ever-growing list of new facts. While existing model editing techniques have shown promise, they are usually evaluated using metrics for reliability, specificity and generalization over one or few edits. We argue that for model editing to have practical utility, we must be able to make multiple edits to the same model. With this in mind, we evaluate the current model editing methods at scale, focusing on two state of the art methods: ROME and MEMIT. We find that as the model is edited sequentially with multiple facts, it continually forgets previously edited facts and the ability to perform downstream tasks. This forgetting happens in two phases -- an initial gradual but progressive forgetting phase followed by abrupt or catastrophic forgetting phase. Both gradual and catastrophic forgetting limit the usefulness of model editing methods at scale -- the former making model editing less effective as multiple edits are made to the model while the latter caps the scalability of such model editing methods. Our analysis also highlights other key limitations of ROME and MEMIT at scale. With our work, we push for the development and evaluation of model editing methods keeping scalability in mind.

Reinforcement learning (RL) provides a compelling framework for enabling autonomous vehicles to continue to learn and improve diverse driving behaviors on their own. However, training real-world autonomous vehicles with current RL algorithms presents several challenges. One critical challenge, often overlooked in these algorithms, is the need to reset a driving environment between every episode. While resetting an environment after each episode is trivial in simulated settings, it demands significant human intervention in the real world. In this paper, we introduce a novel autonomous algorithm that allows off-the-shelf RL algorithms to train an autonomous vehicle with minimal human intervention. Our algorithm takes into account the learning progress of the autonomous vehicle to determine when to abort episodes before it enters unsafe states and where to reset it for subsequent episodes in order to gather informative transitions. The learning progress is estimated based on the novelty of both current and future states. We also take advantage of rule-based autonomous driving algorithms to safely reset an autonomous vehicle to an initial state. We evaluate our algorithm against baselines on diverse urban driving tasks. The experimental results show that our algorithm is task-agnostic and achieves better driving performance with fewer manual resets than baselines.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Pre-trained models learn contextualized word representations on large-scale text corpus through a self-supervised learning method, which has achieved promising performance after fine-tuning. These models, however, suffer from poor robustness and lack of interpretability. Pre-trained models with knowledge injection, which we call knowledge enhanced pre-trained models (KEPTMs), possess deep understanding and logical reasoning and introduce interpretability to some extent. In this survey, we provide a comprehensive overview of KEPTMs for natural language processing. We first introduce the progress of pre-trained models and knowledge representation learning. Then we systematically categorize existing KEPTMs from three different perspectives. Finally, we outline some potential directions of KEPTMs for future research.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司