亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reinforcement learning (RL) provides a compelling framework for enabling autonomous vehicles to continue to learn and improve diverse driving behaviors on their own. However, training real-world autonomous vehicles with current RL algorithms presents several challenges. One critical challenge, often overlooked in these algorithms, is the need to reset a driving environment between every episode. While resetting an environment after each episode is trivial in simulated settings, it demands significant human intervention in the real world. In this paper, we introduce a novel autonomous algorithm that allows off-the-shelf RL algorithms to train an autonomous vehicle with minimal human intervention. Our algorithm takes into account the learning progress of the autonomous vehicle to determine when to abort episodes before it enters unsafe states and where to reset it for subsequent episodes in order to gather informative transitions. The learning progress is estimated based on the novelty of both current and future states. We also take advantage of rule-based autonomous driving algorithms to safely reset an autonomous vehicle to an initial state. We evaluate our algorithm against baselines on diverse urban driving tasks. The experimental results show that our algorithm is task-agnostic and achieves better driving performance with fewer manual resets than baselines.

相關內容

Gaussian Processes (GP) have become popular machine-learning methods for kernel-based learning on datasets with complicated covariance structures. In this paper, we present a novel extension to the GP framework using a contaminated normal likelihood function to better account for heteroscedastic variance and outlier noise. We propose a scalable inference algorithm based on the Sparse Variational Gaussian Process (SVGP) method for fitting sparse Gaussian process regression models with contaminated normal noise on large datasets. We examine an application to geomagnetic ground perturbations, where the state-of-the-art prediction model is based on neural networks. We show that our approach yields shorter prediction intervals for similar coverage and accuracy when compared to an artificial dense neural network baseline.

Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectives can be non-differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box objectives in molecular discovery, traverse chemical space by performing random mutations and crossovers, leading to a large number of expensive objective evaluations. In this work, we ameliorate this shortcoming by incorporating chemistry-aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover and mutation operations in EAs using LLMs trained on large corpora of chemical information. We perform extensive empirical studies on both commercial and open-source models on multiple tasks involving property optimization, molecular rediscovery, and structure-based drug design, demonstrating that the joint usage of LLMs with EAs yields superior performance over all baseline models across single- and multi-objective settings. We demonstrate that our algorithm improves both the quality of the final solution and convergence speed, thereby reducing the number of required objective evaluations. Our code is available at //github.com/zoom-wang112358/MOLLEO

Models for multiphysics problems often contain strong nonlinearities. Including fracture contact mechanics introduces discontinuities at the transition between open and closed or sliding and sticking fractures. The resulting system of equations is highly challenging to solve. The na\"ive choice of Newton's method frequently fails to converge, calling for more refined solution techniques such as line search methods. When dealing with strong nonlinearities and discontinuities, a global line search based on the magnitude of the residual of all equations is at best costly to evaluate and at worst fails to converge. We therefore suggest a cheap and reliable approach tailored to the discontinuities. Utilising adaptive variable scaling, the algorithm uses a line search to identify the transition between contact states. Then, a solution update weight is chosen to ensure that no fracture cells move too far beyond the transition. We demonstrate the algorithm on a series of test cases for poromechanics and thermoporomechanics in fractured porous media. We consider both single- and multifracture cases and study the importance of proper scaling of variables and equations.

In traditional models of supervised learning, the goal of a learner -- given examples from an arbitrary joint distribution on $\mathbb{R}^d \times \{\pm 1\}$ -- is to output a hypothesis that is competitive (to within $\epsilon$) of the best fitting concept from some class. In order to escape strong hardness results for learning even simple concept classes, we introduce a smoothed-analysis framework that requires a learner to compete only with the best classifier that is robust to small random Gaussian perturbation. This subtle change allows us to give a wide array of learning results for any concept that (1) depends on a low-dimensional subspace (aka multi-index model) and (2) has a bounded Gaussian surface area. This class includes functions of halfspaces and (low-dimensional) convex sets, cases that are only known to be learnable in non-smoothed settings with respect to highly structured distributions such as Gaussians. Surprisingly, our analysis also yields new results for traditional non-smoothed frameworks such as learning with margin. In particular, we obtain the first algorithm for agnostically learning intersections of $k$-halfspaces in time $k^{poly(\frac{\log k}{\epsilon \gamma}) }$ where $\gamma$ is the margin parameter. Before our work, the best-known runtime was exponential in $k$ (Arriaga and Vempala, 1999).

We consider the problem of selecting an optimal subset of information sources for a hypothesis testing/classification task where the goal is to identify the true state of the world from a finite set of hypotheses, based on finite observation samples from the sources. In order to characterize the learning performance, we propose a misclassification penalty framework, which enables nonuniform treatment of different misclassification errors. In a centralized Bayesian learning setting, we study two variants of the subset selection problem: (i) selecting a minimum cost information set to ensure that the maximum penalty of misclassifying the true hypothesis is below a desired bound and (ii) selecting an optimal information set under a limited budget to minimize the maximum penalty of misclassifying the true hypothesis. Under certain assumptions, we prove that the objective (or constraints) of these combinatorial optimization problems are weak (or approximate) submodular, and establish high-probability performance guarantees for greedy algorithms. Further, we propose an alternate metric for information set selection which is based on the total penalty of misclassification. We prove that this metric is submodular and establish near-optimal guarantees for the greedy algorithms for both the information set selection problems. Finally, we present numerical simulations to validate our theoretical results over several randomly generated instances.

In recent years, domain-specific accelerators (DSAs) have gained popularity for applications such as deep learning and autonomous driving. To facilitate DSA designs, programmers use high-level synthesis (HLS) to compile a high-level description written in C/C++ into a design with low-level hardware description languages that eventually synthesize DSAs on circuits. However, creating a high-quality HLS design still demands significant domain knowledge, particularly in microarchitecture decisions expressed as \textit{pragmas}. Thus, it is desirable to automate such decisions with the help of machine learning for predicting the quality of HLS designs, requiring a deeper understanding of the program that consists of original code and pragmas. Naturally, these programs can be considered as sequence data. In addition, these programs can be compiled and converted into a control data flow graph (CDFG). But existing works either fail to leverage both modalities or combine the two in shallow or coarse ways. We propose ProgSG, a model that allows interaction between the source code sequence modality and the graph modality in a deep and fine-grained way. To alleviate the scarcity of labeled designs, a pre-training method is proposed based on a suite of compiler's data flow analysis tasks. Experimental results show that ProgSG reduces the RMSE of design performance predictions by up to $22\%$, and identifies designs with an average of $1.10\times$ and $1.26\times$ (up to $8.17\times$ and $13.31\times$) performance improvement in design space exploration (DSE) task compared to HARP and AutoDSE, respectively.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司