亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Batch active learning is a popular approach for efficiently training machine learning models on large, initially unlabelled datasets by repeatedly acquiring labels for batches of data points. However, many recent batch active learning methods are white-box approaches and are often limited to differentiable parametric models: they score unlabeled points using acquisition functions based on model embeddings or first- and second-order derivatives. In this paper, we propose black-box batch active learning for regression tasks as an extension of white-box approaches. Crucially, our method only relies on model predictions. This approach is compatible with a wide range of machine learning models, including regular and Bayesian deep learning models and non-differentiable models such as random forests. It is rooted in Bayesian principles and utilizes recent kernel-based approaches. This allows us to extend a wide range of existing state-of-the-art white-box batch active learning methods (BADGE, BAIT, LCMD) to black-box models. We demonstrate the effectiveness of our approach through extensive experimental evaluations on regression datasets, achieving surprisingly strong performance compared to white-box approaches for deep learning models.

相關內容

Federated learning (FL) is a distributed learning paradigm that maximizes the potential of data-driven models for edge devices without sharing their raw data. However, devices often have non-independent and identically distributed (non-IID) data, meaning their local data distributions can vary significantly. The heterogeneity in input data distributions across devices, commonly referred to as the feature shift problem, can adversely impact the training convergence and accuracy of the global model. To analyze the intrinsic causes of the feature shift problem, we develop a generalization error bound in FL, which motivates us to propose FedCiR, a client-invariant representation learning framework that enables clients to extract informative and client-invariant features. Specifically, we improve the mutual information term between representations and labels to encourage representations to carry essential classification knowledge, and diminish the mutual information term between the client set and representations conditioned on labels to promote representations of clients to be client-invariant. We further incorporate two regularizers into the FL framework to bound the mutual information terms with an approximate global representation distribution to compensate for the absence of the ground-truth global representation distribution, thus achieving informative and client-invariant feature extraction. To achieve global representation distribution approximation, we propose a data-free mechanism performed by the server without compromising privacy. Extensive experiments demonstrate the effectiveness of our approach in achieving client-invariant representation learning and solving the data heterogeneity issue.

Deep learning-based vulnerability detection has shown great performance and, in some studies, outperformed static analysis tools. However, the highest-performing approaches use token-based transformer models, which are not the most efficient to capture code semantics required for vulnerability detection. Classical program analysis techniques such as dataflow analysis can detect many types of bugs based on their root causes. In this paper, we propose to combine such causal-based vulnerability detection algorithms with deep learning, aiming to achieve more efficient and effective vulnerability detection. Specifically, we designed DeepDFA, a dataflow analysis-inspired graph learning framework and an embedding technique that enables graph learning to simulate dataflow computation. We show that DeepDFA is both performant and efficient. DeepDFA outperformed all non-transformer baselines. It was trained in 9 minutes, 75x faster than the highest-performing baseline model. When using only 50+ vulnerable and several hundreds of total examples as training data, the model retained the same performance as 100% of the dataset. DeepDFA also generalized to real-world vulnerabilities in DBGBench; it detected 8.7 out of 17 vulnerabilities on average across folds and was able to distinguish between patched and buggy versions, while the highest-performing baseline models did not detect any vulnerabilities. By combining DeepDFA with a large language model, we surpassed the state-of-the-art vulnerability detection performance on the Big-Vul dataset with 96.46 F1 score, 97.82 precision, and 95.14 recall. Our replication package is located at //figshare.com/s/e7953b4d345b00990d17.

As the rapidly evolving field of machine learning continues to produce incredibly useful tools and models, the potential for quantum computing to provide speed up for machine learning algorithms is becoming increasingly desirable. In particular, quantum circuits in place of classical convolutional filters for image detection-based tasks are being investigated for the ability to exploit quantum advantage. However, these attempts, referred to as quantum convolutional neural networks (QCNNs), lack the ability to efficiently process data with multiple channels and therefore are limited to relatively simple inputs. In this work, we present a variety of hardware-adaptable quantum circuit ansatzes for use as convolutional kernels, and demonstrate that the quantum neural networks we report outperform existing QCNNs on classification tasks involving multi-channel data. We envision that the ability of these implementations to effectively learn inter-channel information will allow quantum machine learning methods to operate with more complex data. This work is available as open source at //github.com/anthonysmaldone/QCNN-Multi-Channel-Supervised-Learning.

Self-supervised learning (SSL) is a growing torrent that has recently transformed machine learning and its many real world applications, by learning on massive amounts of unlabeled data via self-generated supervisory signals. Unsupervised anomaly detection (AD) has also capitalized on SSL, by self-generating pseudo-anomalies through various data augmentation functions or external data exposure. In this vision paper, we first underline the importance of the choice of SSL strategies on AD performance, by presenting evidences and studies from the AD literature. Equipped with the understanding that SSL incurs various hyperparameters (HPs) to carefully tune, we present recent developments on unsupervised model selection and augmentation tuning for SSL-based AD. We then highlight emerging challenges and future opportunities; on designing new pretext tasks and augmentation functions for different data modalities, creating novel model selection solutions for systematically tuning the SSL HPs, as well as on capitalizing on the potential of pretrained foundation models on AD through effective density estimation.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

北京阿比特科技有限公司